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METHOD AND SYSTEM FOR IMAGE
ANALYSIS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of the image
analysis.

2. Description of the Related Art

In the field of the image analysis, a common operation
provides for comparing two images in order to find the rela-
tion occurring therebetween in case both the images include
at least a portion of a same scene or of a same object.

Among a high number of applications, the image compari-
son is of the utmost importance for calibrating video cameras
belonging to a multi-camera system, for assessing the motion
occurring between two frames of a video shoot, and for the
recognition of an object within an image (e.g., a picture). The
latter application is now assuming more and more importance
due to the recent development of object recognition algo-
rithms specifically designed to be employed in the so-called
visual searching engines, i.e., automated services that, start-
ing from a picture, are capable of identifying the object(s)
pictured therein and offering information related to the iden-
tified object(s). Examples of known services of this type
include Google Goggles, Nokia Point&Find, and kooaba
Smart Visuals. An object recognition application typically
provides for comparing a first image—in jargon, referred to as
“query image”—depicting an object to be recognized with a
plurality of model images, each one depicting a respective
known object; this allows to perform a comparison among the
object depicted in the query image and the objects depicted in
the model images.

The model images are typically arranged in a proper model
database. For example, in case the object recognition is
exploited in an online shopping scenario, each model image
corresponds to an item offered by an online store (e.g., the
picture of abook cover, a DVD cover and/or a CD cover). The
number of model images included in a database of such type
is quite high; for example, a model database of an online
shopping service may include several millions of different
model images.

A very efficient way for performing comparing operations
between two images provides for selecting a set of points—in
jargon, referred to as keypoints—in the first image and then
matching each keypoint ofthe set to a corresponding keypoint
in the second image. The selection of which point of the first
image has to become a keypoint is advantageously carried out
by extracting local features of the area of the image surround-
ing the point itself, such as for example the point extraction
scale, the privileged orientation of the area, and the so called
“descriptor”. In the field of the image analysis, a descriptor of
akeypoint is a mathematic operator describing the luminance
gradient of an area of the image (called patch) centered at the
keypoint, with such patch that is orientated according to the
main luminance gradient of the patch itself.

In “Distinctive image features from scale-invariant key-
points” by David G. Lowe, International Journal of computer
vision, 2004, a Scale-Invariant Feature Transform (SIFT)
descriptor has been proposed; briefly, in order to allow a
reliable image recognition, the SIFT descriptors are gener-
ated taking into account that the local features extracted from
the image corresponding to each keypoint should be detect-
able even under changes in image scale, noise and illumina-
tion. The SIFT descriptors are thus invariant to uniform scal-
ing, orientation, and partially invariant to affine distortion and
illumination changes.
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The SIFT descriptor is a quite powerful tool, which allows
to select keypoints for performing accurate image compari-
sons. However, this accuracy can be achieved only with the
use of a quite large amount of data; for example, a typical
SIFT descriptor is an array of 128 data bytes. Since the
number of keypoints in each image is relatively high (for
example, 1000-1500 keypoints for a standard VGA picture),
and since each keypoint is associated with a corresponding
SIFT descriptor, the overall amount of data to be processed
may become excessive for being efficiently managed.

This drawback is exacerbated in case the scenario involves
the use of mobile terminals (e.g., identification of objects
extracted from pictures taken by the camera of a smarthpone).
Indeed, since the operations to be performed for carrying out
the image analysis are quite complex and demanding in terms
of computational load, in this case most of the operations are
usually performed at the server side; in order to have all the
information required to perform the analysis, the server needs
to receive from the mobile terminal all the required data,
including the SIFT descriptors for all the keypoints. Thus, the
amount of data to be transmitted from the terminal to the
server may become excessive for guaranteeing a good effi-
ciency of the service.

According to a solution known in the art, such as for
example the one employed by Google Goggles, this draw-
back is solved at the root by directly transmitting the image,
and not the descriptors, from the mobile terminal to the server.
Indeed, because of the quite high number of keypoints, the
amount of data of the corresponding SIFT descriptors may
exceed the size (in terms of bytes) of a standard VGA picture
itself.

SUMMARY OF THE INVENTION

The Applicant has found that the approaches known in the
art are not efficient, still requiring the management of a high
amount of data, limiting the scalability of the system and the
overall performances.

The Applicant has tackled the problem of how to improve
these approaches in terms of amount of data to be processed.

In particular, the Applicant has tackled the problem to
provide a method for processing an image which requires a
reduced amount of data to be managed.

The Applicant has found that the above problem is solved
by compressing the codebook matrix through factorisation of
the codebook matrix and truncation of the matrices resulting
from said factorisation. An aspect of the present invention
relates to a method for processing an image, comprising:

identifying a group of keypoints in the image;

for each keypoint of the group

a) calculating a corresponding descriptor array includ-
ing a plurality of array elements, each array element
storing values taken by a corresponding color gradi-
ent histogram of a respective sub-region of the image
in the neighborhood of the keypoint;

b) generating at least one compressed descriptor array
by compressing at least one portion of the descriptor
array by means of vector quantization using a code-
book comprising a plurality of codewords;

exploiting said at least one compressed descriptor array of

the keypoints of said group for analysing the image,
wherein the method further comprises:

compressing the codebook, said compressing the code-

book including:

generating a codebook matrix, each row of the codebook
matrix being a codeword of the codebook;
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factorising the codebook matrix so as to obtain the prod-
uct of at least a first matrix and a second matrix, the
energy of the items of the second matrix generally
non-increasing as the column indexes of such
matrixes increase,

truncating the first matrix by removing therefrom a first
number of last columns;

truncating the second matrix by removing therefrom the
first number of last columns and the first number of
last rows;

generating a first further matrix corresponding to the
product of the truncated first matrix by the truncated
second matrix;

quantizing each item of the first further matrix, wherein
each item belonging to a column of the first further
matrix is quantized using a corresponding number of
quantization levels that is lower than or equal to the
number of quantization levels used to quantize the
items belonging to a preceding column:

generating a second further matrix wherein each item of
the second further matrix corresponds to an item of
the first further matrix, each item of said second fur-
ther matrix being an index associated to the quantiza-
tion level assumed by the corresponding quantized
item of the first further matrix;

storing the codebook by memorizing said indexes of the

second further matrix in a memory unit.

According to an embodiment of the present invention the
first matrix (U) is an orthonormal matrix and the second
matrix (S) is a diagonal matrix whose diagonal items corre-
spond to the singular values of the codebook matrix (C), each
diagonal item belonging to a column of the second matrix,
except a last column, being higher then the item belonging to
the following column.

According to an embodiment of the present invention said
product of at least the first matrix (U) and the second matrix
(S) further comprise the transpose of a third matrix (V), the
third matrix (V) being an orthonormal matrix

and wherein said method further comprises:

truncating said third matrix by removing therefrom the first

number of last columns;

storing the truncated third matrix in the memory unit.

According to an embodiment of the present invention said
truncating the first, the second and the third matrices further
comprises:

calculating the energy of the second matrix;

setting a first target value for the memory space occupied

by all the quantized items of the second further matrix
when memorized in the memory unit;
for each diagonal item of the second matrix, calculating a
respective allocation value corresponding to the first
target value multiplied by a ratio between the energy of
such item and the energy of the second matrix;

rounding each allocation value to an integer value, and

setting the first number to the number of columns of the
codebook matrix minus the higher column index of the
second matrix for which the rounded allocation value
corresponding to the diagonal item belonging to the
column of the second matrix identified by such column
index is higher than a threshold.

According to an embodiment of the present invention said
quantizing each item of the first further matrix further com-
prises, for each column of the first further matrix, setting the
corresponding number of quantization levels for quantizing
each item of said column of the first further matrix to two
raised to the power of the rounded allocation value corre-
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4

sponding to the diagonal item belonging to the column of the
second matrix having the same column index as said column
of the first further matrix.

According to an embodiment of the present invention the
method further includes:

selecting a data type;

scaling each item of the truncated third matrix by a coeffi-

cient corresponding to the ratio between the highest

value that can be represented with the selected data type
and the highest absolute value among the absolute val-
ues of the items of the truncated third matrix, and

representing each scaled item of the truncated third matrix
with the selected data type, said storing the codebook
further including memorizing the scaled items of the
tuncated third matrix represented with the selected data
type in the memory unit.

According to an embodiment of the present invention said
generating the first further matrix comprises multiplying the
truncated first matrix by the truncated second matrix and then
multiplying each item of the resulting matrix by the coeffi-
cient.

According to an embodiment of the present invention said
factorizing the codebook matrix comprises using the Singular
Value Decomposition.

According to an embodiment of the present invention said
method further includes, before factorising the codebook
matrix into the product of at least the first and second matri-
ces, calculating an average array obtained from the average of
all the rows of the codebook matrix and then subtracting such
average array from each row of the codebook matrix, said
storing the codebook further including memorizing the aver-
age array in the memory unit.

Another aspect of the present invention provides for a
system for processing an image comprising a group of key-
points. The system being configured to perform the following
operations:

for each keypoint of the group:

a) calculating a corresponding descriptor array includ-
ing a plurality of array elements, each array element
storing values taken by a corresponding color gradi-
ent histogram of a respective sub-region of the image
in the neighborhood of the keypoint;

b) generating at least one compressed descriptor array
by compressing at least one portion of the descriptor
array by means of vector quantization using a code-
book comprising a plurality of codewords;

exploiting said at least one compressed descriptor array of

the keypoints of said group for analysing the image,
wherein the method further comprises:

compressing the codebook, said compressing the code-

book including:

generating a codebook matrix, each row of the codebook
matrix being a codeword of the codebook;

factorising the codebook matrix so as to obtain the prod-
uct of at least a first matrix and a second matrix, the
energy of the items of the second matrix generally
non-increasing as the column indexes of such
matrixes increase,

truncating the first matrix by removing therefrom a first
number of last columns;

truncating the second matrix by removing therefrom the
first number of last columns and the first number of
last rows;

generating a first further matrix corresponding to the
product of the truncated first matrix by the truncated
second matrix;
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quantizing each item of the first further matrix, wherein
each item belonging to a column of the first further
matrix is quantized using a corresponding number of
quantization levels that is lower than or equal to the
number of quantization levels used to quantize the
items belonging to a preceding column:
generating a second further matrix wherein each item of
the second further matrix corresponds to an item of
the first further matrix, each item of said second fur-
ther matrix being an index associated to the quantiza-
tion level assumed by the corresponding quantized
item of the first further matrix;
storing the codebook by memorizing said indexes of the
second further matrix in a memory unit.
Another aspect of the present invention provides for a soft-
ware program product including code portions configured to
perform the method according to the first aspect or to any of
the embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present
invention will be made evident by the following description
of some exemplary and non-limitative embodiments thereof,
to be read in conjunction with the attached drawings,
wherein:

FIG. 1 illustrates in terms of functional blocks an extrac-
tion procedure directed to extract from a query image an
optimal set of keypoints and generate a compressed set of
descriptors according to an embodiment of the present inven-
tion;

FIGS. 2A-2F are statistical distributions of corresponding
selected local features of keypoints according to some exem-
plary embodiments of the present invention;

FIG. 2G is an exemplary picture processed according to the
extraction procedure of FIG. 1;

FIG. 3A illustrates an exemplary descriptor of the SIFT
type;

FIG. 3B illustrates an exemplary descriptor array of the
descriptor of FIG. 3A;

FIG. 4A illustrates an exemplary descriptor array compres-
sion according to a solution known in the art;

FIG. 4B illustrates an exemplary descriptor array compres-
sion according to another solution known in the art;

FIG. 5 illustrates an arrangement of sub-histograms of a
descriptor in correlation families according to an embodi-
ment of the present invention;

FIGS. 6 A-6D show how the descriptor array is compressed
according to exemplary embodiments of the present inven-
tion;

FIG. 7A illustrates an exemplary distribution of keypoints
KP;

FIG. 7B illustrates how a grid can be superimposed over
the query image for quantizing the coordinates of the key-
points of FIG. 7A;

FIG.7C is an exemplary graphical depiction of a histogram
obtained by superimposing the grid of FIG. 7B over the set of
keypoints KP of FIG. 7A;

FIG. 7D identifies the columns and rows of the grid of FIG.
7B which are entirely formed by cells that do not include any
keypoint;

FIG. 7E illustrates an exemplary histogram over a rank-1
support;

FIG. 7F illustrates a histogram map corresponding to the
histogram over the rank-1 support of FIG. 7E;

FIG. 8A illustrates an example of a word histogram;

FIG. 8B illustrates an example of a histogram map;
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FIG. 9 illustrates in terms of functional blocks a matching
procedure directed to perform the comparison between two
images according to an embodiment of the present invention;

FIG. 10 illustrates in terms of functional blocks a retrieval
procedure directed to retrieve from a model database a model
image depicting the same object/scene depicted in the query
image according to an embodiment of the present invention;

FIG. 11 is a flow chart illustrating the main phases of a
codebook compression procedure according to an embodi-
ment of the present invention;

FIG. 12 is a flow chart illustrating the main phases of a
method for selecting some parameter values to be used in the
codebook compression procedure according to an embodi-
ment of the present invention;

FIGS. 13A-13G illustrates performance of image compari-
son systems based on non compressed codebooks and based
on compressed codebooks.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS OF THE INVENTION

Extraction Procedure (FIG. 1)

FIG. 1 illustrates in terms of functional blocks a procedure,
hereinafter referred to as “extraction procedure” and identi-
fied with the reference 100, directed to process an input image
in order to obtain an optimal set of keypoints and generate a
corresponding set of descriptors according to an embodiment
of the present invention. The keypoints and the descriptors
will be then exploited for image analysis purposes. In the
following of the present description, the generic expressions
“image analysis” and “analyzing an image” have to be
intended to comprise all those operations which provide for
comparing an image with at least one another image. These
operations may be carried out in a wide variety of applica-
tions, such as for example in an object recognition applica-
tion, as well as in an application providing for the creation of
a single panoramic picture starting from a plurality of differ-
ent pictures.

As will be described later on, the extraction procedures
according to an embodiment of the present invention further
provides for selecting an optimal subset of keypoints and
compressing the descriptors of such keypoints to an extent
such to greatly improve the efficiency of subsequent proce-
dures.

The steps of the extraction procedure 100 described in this
section may be carried out by proper processing units, whose
structure and function depends on the specific field of appli-
cation to which they are destined. For example, each process-
ing unit may be a hardware unit specifically designed to
perform one or more steps of the method. Moreover, the steps
of'the method may be carried out by a programmable machine
(e.g., a computer) under the control of a corresponding set of
instructions.

Keypoints Extraction (Phase 110)

The first phase 110 of the extraction procedure 100 pro-
vides for receiving a query image 115 and extracting there-
from a first set of keypoints KP, each one associated with a
corresponding pair of spatial coordinates C identifying the
location of such keypoint KP within the query image 115.

This operation may be carried out by exploiting the known
Difference of Gaussians (DoG) keypoint extraction algo-
rithm; however, similar considerations apply in case different
keypoint extraction algorithms are employed, such as for
example the Determinant of the Hessians (DoH) keypoint
extraction algorithm. Making reference to the DoG keypoint
extraction algorithm, the query image 115 is convolved with
Gaussian filters in a sequence at different scales. Then, a
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difference operation is carried out between pairs of adjacent
Gaussian-blurred images in the sequence. The keypoints KP
are then chosen as the points having maximum/minimum
values of Difference of Gaussian (DoG) at multiple scales.
Particularly, each pixel in a DoG image is compared to its
eight neighbors at the same scale and to nine neighboring
pixels at each of the neighboring scales (i.e., the subsequent
and the previous scales in the sequence). If the pixel value is
the maximum or minimum among all compared pixels, that
point is considered a candidate keypoint KP.

The phase 110 also provides that each keypoint KP is
assigned to one or more orientations based on local image
luminance gradient directions. For example, an orientation
histogram with a plurality of bins is formed, with each bin
covering a corresponding degree interval. Each sample in the
neighboring window added to a histogram bin is weighted by
its gradient magnitude and by a Gaussian-weighted circular
window. The peaks in the resulting histogram correspond to
dominant orientations. Once the histogram is filled, the ori-
entations corresponding to the highest peak and local peaks
that are within 80% of the highest peaks are assigned to the
keypoint KP. In case of multiple orientations have been
assigned, an additional keypoint KP is created having the
same location and scale as the original keypoint for each
additional orientation.

At the end of phase 110 a set of keypoints KP is thus
generated, together with the corresponding coordinates C, the
scale S at which the keypoint is extracted, its dominant ori-
entation O, and the peak P, i.e., the absolute value of the DoG
corresponding to such keypoint (which is indicative of the
contrast thereof).

Descriptors Generation (Phase 120)

The following phase 120 provides to process the query
image 115 in order to compute for each keypoint KP a corre-
sponding descriptor D. Inthe example at issue, the descriptors
D computed at phase 120 are descriptor of the SIFT type.
While the keypoints KP have been extracted in such a way to
ensure invariance to image location, scale and rotation, the
SIFT descriptors D are computed in such a way to be highly
distinctive and partially invariant to illumination and view-
point. Specifically, for each keypoint KP a set of 16 sub-
histograms are calculated on a 4x4 grid that is centered at the
keypoint KP location and orientated according to the domi-
nant orientation of the keypoint KP. Each sub-histogram
includes 8 bins, each one corresponding to an orientation
having an angle n*7/4 (n=0, 1, . . . 7) with respect to the
dominant orientation; the frequency of each bin of a sub-
histogram is proportional to the luminance gradient of the
grid cell (hereinafter referred to as sub-region) corresponding
to such sub-histogram, considered along the direction identi-
fied by such bin. The values of such orientation histograms
are arranged in an array, forming the descriptor D of the
keypoint KP. Since there are 4x4=16 sub-histograms each
with 8 bins, the descriptor D is an array having 128 items.

The concepts of the present invention are also applicable if
the SIFT descriptor is calculated on a grid including a differ-
ent number of cells, and/or with a different number of bins per
histogram.

Moreover, even if in the example at issue reference has
been made to descriptors of the SIFT type, similar consider-
ations apply in case different types of descriptors are
employed, such as for example the Speeded Up Robust Fea-
ture (SURF) and the Histogram of Oriented Gradients
(HOG), or possibly others. Furthermore, even if reference has
been made and will be made in the following to descriptors
comprising data relating to luminance gradients, similar con-
siderations apply if gradients of different parameters are con-
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sidered. Indeed, as it is well known to those skilled in the art,
the luminance is only one of the physical properties of the
color. Thus, even if the luminance has been ascertained to be
the best (i.e., the most robust) physical property to be consid-
ered for image analysis purposes, different types of descrip-
tors may be also considered, for example comprising data
relating to chrominance gradients, saturation gradients, or
even color (which includes both luminance, saturation and
chrominance) gradients.

As already mentioned above, carrying out image analysis
operations involves the management of a quite large amount
of data: indeed, each keypoint KP is associated with a plural-
ity of local features (hereinafter globally identified with ref-
erence LFkp), including the coordinates C, the scale S, the
dominant orientation O, and the peak P, as well as a corre-
sponding descriptor D formed by an array of 128 items. For
this purpose, in order to reduce the overall amount of data to
be managed (e.g., to be memorized and/or transmitted), the
extraction procedure 100 according to an embodiment of the
present invention provides for two expedients, i.e.:

1) reducing the number of the previously generated key-
points KP by selecting the most relevant keypoints KP
(from the image comparison point of view), in order to
obtain an optimal subset SUB of keypoints KP, and

2) properly compressing both the coordinates C and the
descriptors D.

Phase 130 of the extraction procedure 100 is dedicated to
the selection of the optimal subset SUB, phase 140 is dedi-
cated to the compression of the descriptors D, and phase 150
is dedicated to the compression of the coordinates C.
Selection of the Optimal Subset of Keypoints (Phase 130)

According to an embodiment of the present invention, the
selection of the optimal subset SUB is carried out by calcu-
lating for at least one local feature LFkp—the coordinates C,
the scale S, the dominant orientation O, the peak P and the
descriptor D—of each keypoint KP of the query image 115 at
least one corresponding feature relevance probability FRP,
sorting the keypoints KP according to a keypoint relevance
probability KRP based on the feature relevance probabilities
FRP of its local features LFkp, and then selecting the key-
points KP having the highest keypoint relevance probabilities
KRP.

According to an embodiment of the present invention, the
feature relevance probability FRP of each local feature LFkp
of the generic keypoint KP is calculated by exploiting a
corresponding reference statistical distribution Rsd, which
has been already predetermined in advance after having car-
ried out statistical evaluations on a benchmark image data-
base.

The reference statistical distributions Rsd are made in such
a way to reflect the statistical behavior of the local features
LFkp of keypoints KP considered useful for image analysis
purposes.

For example, in case of object recognition procedures, the
benchmark image database is a database comprising a plural-
ity of image pairs, with each image pair consisting of two
pictures depicting a same object/scene. According to an
embodiment of the present invention, the reference statistical
distributions are generated in the following way.

Keypoints are firstly extracted from all the images of the
benchmark database. Then, a first statistical analysis is car-
ried out on one or more selected local features of all the
extracted keypoints, so as to generate first statistical distribu-
tions of such selected local features. Each first statistical
distribution of a local feature is arranged in the form of a
histogram, obtained by counting the number of keypoints
(keypoints frequency)—among the totality of keypoints
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extracted from the images of the benchmark database—hav-
ing a value of such local feature that falls within each of a
plurality predefined local feature value intervals (bin). Then,
for each image pair, keypoints of one picture are matched
with keypoints of the other picture. The matches among such
keypoints are processed using an image comparison proce-
dure (such as any one among the known image comparison
procedures based on image feature matching) in order to
identify which match is correct (inlier) and which is incorrect
(outlier). A second statistical analysis is then carried out on
the same feature or features previously considered in order to
generate the reference statistical distributions Rsd to be used
for calculating the feature relevance probabilities FRP. This
time, the generation of the reference statistical distributions
Rsd is carried out by calculating for each bin a ratio between
the number of keypoints belonging to inliers and having a
value of the corresponding local feature that falls within said
bin, and the total number of keypoints (both belonging to
inliers and outliers) having a value of the corresponding local
feature that falls within the same bin. The Applicant has
observed that the first statistical distributions and the refer-
ence statistical distributions Rsd are quite different to each
other. Since the reference statistical distributions Rsd are
generated taking into account the keypoints that involve a
correct feature match (inlier), the Applicant has found that
such statistical distributions are good representatives of the
statistical behavior of keypoints (hereinafter, “relevant key-
points”) which are relevant for image analysis purposes, and
particularly suited for being efficiently employed in an image
comparison procedure.

FIGS. 2A-2F illustrate some statistical distributions Rsd of
corresponding selected local features LFkp of keypoints KP
according to some exemplary embodiments of the present
invention. In particular, the statistical distributions Rsd of
FIGS. 2A-2F have been generated from images of a bench-
mark database specifically arranged for object recognition
applications. Should a different image analysis application be
considered, such as for example the creation of a single pan-
oramic picture starting from a plurality of different pictures,
the images of the benchmark, and therefore, the resulting
statistical distributions Rsd would be different.

FIG. 2A is a statistical distribution Rsd related to the coor-
dinates C of the keypoints KP. Each bin of the corresponding
histogram represents the distance (in pixel) of the generic
keypoint KP from the center of the image. In the example at
issue, the considered image is of the VGA type (i.e., having a
resolution of 640x480), thus the center corresponds to the
coordinate (320, 240). According to the histogram illustrated
in FIG. 2A, the bin having the highest keypoints KP fre-
quency is the one corresponding to the center of the image.
This means that the closer a keypoint KP is to the center, the
higher the probability that such keypoint KP is a relevant
keypoint; the trend of the histogram frequencies monotoni-
cally decreases as the distance from the center increases. This
could be easily explained by the fact that when an object is
photographed, it is highly probable that said object is framed
in the center of the picture. It has to be appreciated that in this
case the bins of the histogram do not have all the same widths;
this is due to the fact that the width of each bin has been
properly determined by a (scalar and/or vector) quantizer in
such a way to compute few bins, avoiding thus the occurrence
of overfitting phenomenon occurrences. The concepts of the
present invention also apply in case a (scalar and/or vector)
uniform quantization is employed, i.e., with all the bins of the
histogram that have a same width.

FIG. 2B is a statistical distribution Rsd related to the domi-
nant orientation O of the keypoints KP. Each bin of the cor-
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responding histogram represents the angle (in radians) of the
dominant direction of the generic keypoint KP with respect to
the horizon (corresponding to 0 radians). According to the
histogram illustrated in FIG. 2B, the bins having the highest
keypoints KP frequencies are the ones corresponding to the
orientations which are parallel or perpendicular to the horizon
orientation (i.e., corresponding to 7/2, 0, -w/2, —m). This
means that the closer the orientation of a keypoint KP is to one
of said orientations, the higher the probability that such key-
point KP is a relevant keypoint. This could be explained by
the fact that when an object is photographed, it is highly
probable that said object is framed so as to mainly extend
parallel and/or perpendicular to the horizon line. In this case
as well, the width of the bins is determined by means of a
quantizer.

FIG. 2C is a statistical distribution Rsd related to the peak
P of the keypoints KP. Each bin of the corresponding histo-
gram represents the contrast between the generic keypoint KP
and the most similar point among the neighbor ones. Accord-
ing to the histogram illustrated in FIG. 2C, the bin having the
highest keypoints KP frequency is the one corresponding to
the highest peak values. This means that the higher the con-
trast of a keypoint KP, the higher the probability that such
keypoint KP is a relevant keypoint; the trend of the histogram
frequencies monotonically increases as the contrast
increases. This could be easily explained by the fact that a
point of a picture having a high contrast is easily recognizable
and identifiable. In this case as well, the width of the bins is
determined by means of a quantizer.

FIG. 2D is a statistical distribution Rsd related to the scale
S of the keypoints KP. Each bin of the corresponding histo-
gram represents a particular scale S at which the keypoint KP
may be extracted. According to the histogram illustrated in
FIG. 2D, the bin having the highest keypoints KP frequency
corresponds to a mid-low scale. In this case as well, the width
of'the bins is determined by means of a quantizer.

FIG. 2E is a first statistical distribution Rsd related to the
descriptors D of the keypoints KP. In this case, the corre-
sponding histogram is three-dimensional, with each bin
thereof corresponding to interval values of two parameters of
the descriptor D of the generic keypoint KP, i.e., the mean (x
axis) and the variance (y axis) of the descriptor D. Greater
frequency values are indicated by circles of larger diameter.
The mean and the variance have been considered together to
form a same histogram, since they are linked to each other.
According to such histogram, the bin having the highest key-
points KP frequency, represented by larger circles, is the one
corresponding to the highest mean and the lowest variance.
This can be explained by the fact that the higher the mean of
the descriptor D of a keypoint KP, the higher the luminance
gradient corresponding to such keypoint KP, and the lower the
variance of the descriptor D of a keypoint KP, the lower the
unwanted noise affecting such keypoint KP.

FIG. 2F is a second statistical distribution Rsd related to the
descriptors D of the keypoints KP. In this case, each bin
corresponds to a particular maximum distance between the
descriptor D of a keypoint KP and the descriptors D of the
other keypoints KP of the same image. For example, such
maximum distance may be computed based on the Euclidean
distance between descriptors, Other known method may be
also contemplated, such as for example exploiting the sym-
metrized Kullback-Leibler divergence.

Returning to FIG. 1, according to an embodiment of the
present invention, phase 130 of the extraction procedure 100
provides for calculating, for each keypoint KP extracted at
phase 110:
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A first feature relevance probability FRP1, obtained from
the statistical distribution Rsd related to the coordinates
C of said keypoint KP. The histogram corresponding to
said distribution is inspected in order to identify the bin
thereof fitting the coordinates C of said keypoint KP;
then, the feature relevance probability FRP1 is set equal
to the keypoints frequency of the identified bin.

A second feature relevance probability FRP2, obtained
from the statistical distribution Rsd related to the domi-
nant orientation O of said keypoint KP. The histogram
corresponding to said distribution is inspected in order
to identify the bin thereof fitting the dominant orienta-
tion O of said keypoint KP; then, the feature relevance
probability FRP2 is set equal to the keypoints frequency
of the identified bin.

A third feature relevance probability FRP3, obtained from
the statistical distribution Rsd related to the peak P of
said keypoint KP. The histogram corresponding to said
distribution is inspected in order to identify the bin
thereof fitting the peak P of said keypoint KP; then, the
feature relevance probability FRP3 is set equal to the
keypoints frequency of the identified bin.

A fourth feature relevance probability FRP4, obtained
from the statistical distribution Rsd related to the scale S
of said keypoint KP. The histogram corresponding to
said distribution is inspected in order to identify the bin
thereof fitting the scale S of said keypoint KP; then, the
feature relevance probability FRP4 is set equal to the
keypoints frequency of the identified bin.

A fifth feature relevance probability FRP5, obtained from
the statistical distribution Rsd related to the mean and
the variance of the descriptor D of said keypoint KP. The
histogram corresponding to said distribution is
inspected in order to identify the bin thereof fitting the
mean and the variance of the elements of the descriptor
D of'said keypoint KP; then, the feature relevance prob-
ability FRPS is set equal to the keypoints frequency of
the identified bin.

A sixth feature relevance probability FRP6, obtained from
the statistical distribution Rsd related to the maximum
distance (e.g., the Euclidean distance) between the
descriptor D of said keypoint KP and the descriptors D
of'the other keypoints KP. The histogram corresponding
to said distribution is inspected in order to identify the
bin thereof fitting such distance; then, the feature rel-
evance probability FRP6 is set equal to the keypoints
frequency of the identified bin.

Therefore, for each keypoint KP, a keypoint relevance
probability KRP is obtained by at least one of, or by combin-
ing among them the feature relevance probabilities FRP of the
local features thereof. For example, starting with the assump-
tion that the feature relevance probabilities FRP are indepen-
dent to one another, the keypoint relevance probability KRP
of the generic keypoint KP is calculated by multiplying to
each other its corresponding feature relevance probabilities
FRP. Generally, the higher the number of different feature
relevance probabilities FRP used to calculate the keypoint
relevance probability KRP, the better the results obtainable by
employing such method. By considering the example of SIFT
descriptors for visual searching applications, it is preferable
that the feature relevance probabilities considered for calcu-
lating the keypoint relevance probability include at least those
corresponding to the scale, the peak and the distance from the
centre.

FIG. 2G is an exemplary picture in which a plurality of
keypoints are identified by means of corresponding circular
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spots, each one having a diameter that is proportional to the
relevance probability KRP of the keypoint.

Once the keypoint relevance probabilities KRP of all the
keypoints KP extracted in phase 110 have been calculated,
said keypoints KP are sorted in a sequence according to a
decreasing keypoint relevance probability KRP order. Then,
the optimal subset SUB is formed by taking a number (based
on the desired reduction in the amount of data to be managed)
of'keypoints KP from the first ones of the ordered sequence.
The selected keypoints KP belonging to the optimal subset
SUB results to be the most relevant keypoints KP (from the
image comparison point of view) among the totality of key-
points KP extracted in phase 110. In this way, the reduction of
the overall amount of data is carried out in a smart and
efficient way, taking into account only the relevant keypoints
KP, and discarding those that are less useful.

It is underlined that although the selection of the optimal
subset of keypoints according to the embodiment of the
invention above described provides for calculating each fea-
ture relevancy probability exploiting a corresponding statis-
tical distribution Rsd obtained by calculating for each bin
thereof a ratio between the keypoint inliers having a value of
the corresponding local feature that falls within said bin, and
the total number of keypoints having a value of the corre-
sponding local feature that falls within the same bin, the
concepts of the present invention are also applicable in case
different, statistically equivalent statistical distributions are
employed, obtained with different, even manual, methods. In
the following description, two statistical distributions are
considered statistically equivalent one to another if they allow
to obtain similar feature relevancy probabilities starting from
a same set of keypoints.

Compression of the Descriptors (Phase 140)

According to an embodiment of the present invention, the
compression ofthe descriptors D is carried out through vector
quantization, by exploiting a reduced number of optimized
codebooks.

FIG. 3A illustrates an exemplary descriptor D of the STFT
type (one of the descriptors D generated at phase 120 of the
extraction procedure 100 of FIG. 1 which has been selected to
be part of the optimal subset SUB) corresponding to a generic
keypoint KP. As already mentioned above, the descriptor D
comprises sixteen sub-histograms shi (i=1, 2, . . ., 16), each
one showing how the luminance gradient of a respective
sub-region of the image close to the keypoint KP is distributed
along eight directions. Specifically, each sub-histogram shi is
associated with a sub-region corresponding to one of 16 cells
of'a 4x4 grid that is centered at the keypoint KP location and
oriented according to the dominant orientation O of the key-
point KP; each sub-histogram shi includes eight bins, each
one corresponding to an orientation having an angle n*m/4
(n=0, 1, . .. 7) with respect to the dominant orientation O.

As illustrated in FIG. 3B, the values of all the orientation
histograms shi ofa descriptor D are arranged in a correspond-
ing descriptor array, identified in figure with the reference
DA. The descriptor array DA comprises sixteen elements ai
(i=1, 2, .. ., 16), each one storing the values taken by a
corresponding sub-histogram shi (i=1, 2, . . ., 16); each
element ai comprises in turn eight respective items, each one
storing a frequency value corresponding to a respective one of
the eight bins of the sub-histogram shi. Thus, each descriptor
array DA includes 16*8=128 items. By considering that in a
SIFT descriptor D a typical frequency value may range from
0 to 255, each item of the descriptor array DA can be repre-
sented with a byte; therefore, the memory occupation of the
descriptor array DA is equal to 128 bytes. Thus, making
reference again to the extraction procedure 100 of FIG. 1, the
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amount of data (in bytes) corresponding to all the descriptors
D of the keypoints KP belonging to the selected optimal
subset SUB is equal to 128 multiplied by the number of
keypoints KP of the optimal subset SUB.

In order to reduce this amount of data, the descriptor arrays
DA corresponding to such descriptors D are compressed
through vector quantization.

As it is well known to those skilled in the art, compressing
a data array formed by n elements (n-tuple) by exploiting
vector quantization provides for jointly quantizing the set of
all the possible n-tuple values which the data array may
assume into a reduced set comprising a lower number of
n-tuple values (which values may even differ from the values
of'the set to be quantized). Since the reduced set comprises a
lower number of n-tuple values, it requires less storage space.
The n-tuple values forming the reduced set are also referred to
as “codewords”. Each codeword is associated with a corre-
sponding set of different n-tuple values the array may assume.
The association relationships between n-tuple values of the
data array and codewords is determined by means of a corre-
sponding codebook.

Making reference in particular to the descriptor array DA,
which includes 16 elements ai formed in turn by eight items
each having values ranging from 0 to 255, the descriptor array
DA may take a number N=256'2® of different 16-tuple values.
By applying compression through vector quantization, such
N different 16-tuple values are approximated with a number
N1<N of codewords of a codebook. The codebook deter-
mines association relationships between each codeword and a
corresponding set of 16-tuple values of the descriptor array
DA. Therefore, each codeword of the codebook is a 16-tuple
value which is used to “approximate” a corresponding set of
16-tuple values of the descriptor array DA. The vector quan-
tization is a lossy data compression, whose accuracy can be
measured through a parameter called distortion. The distor-
tion may be for example calculated as the Euclidean distance
between a generic codeword of the codebook and the set of
n-tuple values of the array which are approximated by such
codeword. Similar considerations apply even if the distortion
is calculated with a different method. In any case, broadly
speaking, the higher the number N1 of codewords of a code-
book, the lower the distortion of the compression.

Asitis well known to those skilled in the art, the generation
of the codewords of a codebook is typically carried out by
performing statistical operations (referred to as training
operations) on a training database including a collection of a
very high number of training arrays. Making reference in
particular to the descriptor array DA, the training database
may include several millions of training descriptor arrays,
wherein each training descriptor array is one of the N=256'%
possible 16-tuple values the descriptor array DA may assume.

According to a solution illustrated in FIG. 4A, the whole
descriptor array DA is compressed using a single codebook
CBK comprising N1 16-tuple value codewords CWj
(5=1,2,...N1). Therefore, with N1 different codewords CWj,
the minimum number of bits required to identify the code-
words is equal to log, N1. As already mentioned above, the
generation of the N1 different codewords CWj of such single
codebook CBK is carried out by performing training opera-
tions on a plurality of training descriptor arrays, wherein each
training descriptor array is one of the N=256'2% possible
16-tuple values the descriptor array DA may assume.

In order to keep the compression distortion under a suffi-
ciently reduced threshold such as not to impair the outcome of
the subsequent image analysis operations, the required code-
words number N1 may become very high. Having a codebook
formed by too high a number N1 of codewords is disadvan-
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tageous under different points of view. Indeed, the number of
training arrays to be used for generating the codewords would
become excessive, and the processing times would become
too long. Moreover, in order to carry out compression opera-
tions by exploiting a codebook, the whole N1 codewords
forming the latter have to be memorized somewhere, occu-
pying a non-negligible amount of memory space. The latter
drawback is quite critical, since the hardware employed for
image analysis applications (e.g., Graphic Processing Units,
GPU) may be equipped with not so capacious memories.

Making reference to FIG. 4B, in order to reduce the whole
number of codewords CWj to be managed without increasing
the distorsion, the descriptor array DA may be subdivided
into a plurality of sub-arrays SDAk (k=1, 2, . . . ), each one
comprising a respective number mk of elements ai of the
descriptor array DA, and then each sub-array SDAK is indi-
vidually compressed using a respective codebook CBKk
comprising N2 mk-tuple value codewords CWj (j=1, 2, . ..
N2).

In the example illustrated in FIG. 4B, the descriptor array
DA is subdivided into four sub-arrays SDAk (k=1, 2, 3, 4),
each one comprising mk=4 elements ai of the descriptor array
DA:

the first sub-array SDA1 is formed by the element sequence

al, a2, a3, a4,

the second sub-array SDA2 is formed by the element

sequence aS, a6, a7, a8;

the third sub-array SDA3 is formed by the element

sequence a9, al0, all, al2, and

the fourth sub-array SDA4 is formed by the element

sequence al3, al4, al5, al6.

The compression of each sub-array SDAK is carried out
using a respective codebook CBKy (y=k) comprising N2
4-tuple value codewords CWj (j=1, 2, . .. N2). Therefore, with
4*N2 different codewords CWj, the minimum number of bits
required to identify all the codewords is equal to 4*log, N2.
Even if in the considered case each sub-array SDAk has been
compressed using a codebook CBKy comprising a same
number N2 of codewords CWj, similar considerations apply
in case each sub-array SDAk is compressed using a respec-
tive, different, number of codewords CWj.

In the case illustrated in FIG. 4B, the generation of the N2
different codewords CWj of each codebook CBKYy is carried
out by performing training operations on a respective sub-set
oftraining descriptor arrays. Each sub-set of training descrip-
tor arrays of a codebook CBKk corresponds to one of the four
sub-arrays SDAk, and may be obtained by considering from
each training descriptor array used to generate the single
codebook CBK of FIG. 4A only the portion thereof corre-
sponding to the sub-array SDAk. For example, in order to
generate the codebook CBK1, only the first four elements al,
a2, a3, a4 of the 16-tuple training descriptor arrays used to
generate the single codebook CBK of FIG. 4A are employed.

Compared to the case of FIG. 4A, in which the whole
descriptor array DA is compressed using a single codebook
CBK formed by codewords CWj having the same dimension
of the descriptor array DA itself (16 elements), the use of
codebooks CBKy formed by codewords CWj having a
(smaller) dimension mk of a sub-array SDAk thereof (e.g.,
mk=4 elements) allows to obtain, with a same number of
codewords CWj, a lower distortion.

Having fixed the total number of codewords CWj, the
higher the number of sub-arrays SDAk which the descriptor
array DA is subdivided in, the lower the distortion, but—at the
same time—the higher the minimum number of bits required
to identify all the codewords CWj.
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According to an embodiment of the present invention, the
subdivision of the descriptor array DA in sub-arrays SDAk
for compression purposes is carried out by taking into con-
sideration the occurrence of correlation relationships among
the elements ai of the descriptor array DA.

As already described with reference to FIGS. 3A and 3B,
each element ai of the descriptor array DA stores the values
taken by the sub-histogram shi associated with a respective
sub-region, which sub-region corresponds in turn to a cell of
the 4x4 grid centered at the keypoint KP corresponding to
such descriptor array DA.

According to an embodiment of the present invention illus-
trated in FIG. 5, after having carried out statistical behavioral
analysis on a large amount of descriptor arrays DA (for
example exploiting the training descriptor arrays of the train-
ing database), it has been found that the sub-histograms shi of
a generic keypoint KP can be arranged in correlation families
CFx (x=1, 2, 3, 4), with each correlation family CFx com-
prising a set of correlated sub-histograms shi with a similar
statistical behavior, i.e., with a similar trend of the bin fre-
quencies. For example, two sub-histograms shi belonging to
a same correlation family CFx may have a similar number of
frequency peaks at same (or similar) bins.

The statistical behavioral analysis employed to form the
correlation families CFx showed that, having fixed the maxi-
mum number of codewords CWj to be used for compressing
the descriptor array DA, if the arrangement of the sub-histo-
grams shi in correlation families CFx is varied (by assigning
the sub-histograms shi to different correlation families CFx),
the resulting distortion accordingly varies. The correlation
families CFx are thus formed by considering, among all the
possible sub-histograms shi subdivisions, the one corre-
sponding to the lowest distortion.

After having performed such statistical behavioral analysis
it has also been found that the correlation between the statis-
tical behavior of two sub-histograms shi depends on two main
parameters, i.e., the distance of the sub-regions associated to
the sub-histograms shi from the keypoint KP and the domi-
nant orientation thereof.

Making reference to FIG. 5, the sixteen sub-histograms shi
ofakeypoint KP are arranged in four correlation families, i.e.:

a first correlation family CF1 comprising the sub-histo-

grams sh1, sh4, sh13 and sh16;

a second correlation family CF2 comprising the sub-histo-

grams sh2, sh3, sh14 and sh15;

a third correlation family CF3 comprising the sub-histo-

grams sh5, sh8, sh9 and sh12, and

a fourth correlation family CF4 comprising the sub-histo-

grams sh6, sh7, sh10 and sh11.

According to an embodiment of the present invention, the
above identified correlation families CFx are advantageously
exploited in order to compress the descriptor array DA using
a reduced number of optimized codebooks CBKy. The sub-
division of the descriptor array DA in sub-arrays SDAKk is
carried out in such a way that at least two sub-arrays SDAk
have the same global (i.e., considering all the elements
thereof) statistical behavior; in this way, it is possible to use a
single codebook CBKy to compress more than one sub-arrays
SDAk. For this purpose, the subdivision of the descriptor
array DA is carried out in such a way to obtain group(s) of
sub-arrays SDAKk in which for each group the elements ai
occupying the same position in all the sub-arrays SDAk of the
group belong to a same correlation family CFx. Therefore, all
the sub-arrays SDAk belonging to a same group can be advan-
tageously compressed using a same corresponding codebook
CBKy, whose codewords CWj are obtained by considering,
from each training descriptor array used to generate the single
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codebook CBK of FIG. 4A, only the elements thereof belong-
ing to the correlation families CFx which the elements ai of
the sub-arrays SDAk of the group belong to.

According to an exemplary embodiment of the present
invention illustrated in FIG. 6A, the descriptor array DA is
subdivided in four sub-arrays SDA1-SDA4 which are
arranged in a single group. Therefore, all the sub-arrays
SDAk are compressed using a same codebook CBK1. Spe-
cifically:

the first sub-array SDA1 is formed by the element sequence

al, a2, a6, a5;

the second sub-array SDA2 is formed by the element

sequence a4, a3, a7, a8;

the third sub-array SDA3 is formed by the element

sequence al6, al5, all, al2, and

the fourth sub-array SDA4 is formed by the element

sequence al3, al4, al0, a9.

In this case:

the first elements ai of each sub-array SDAk belong to the

first correlation family CF1;

the second elements ai of each sub-array SDAk belong to

the second correlation family CF2;

the third elements ai of each sub-array SDAKk belong to the

fourth correlation family CF4, and

the fourth elements ai of each sub-array SDAKk belong to

the third correlation family CF3.

The codebook CBK1 for compressing the generic sub-
array SDA1-SDA4 includes N3 codewords CWj, wherein
each codeword CWj has the first element belonging to the first
correlation family CF1, the second element belonging to the
second correlation family CF2, the third element belonging to
the fourth correlation family CF4, and the fourth element
belonging to the third correlation family CF3.

With N3 different codewords CWj, the minimum number
of bits required to identify all the codewords is equal to
4*(log, N3).

According to another exemplary embodiment of the
present invention illustrated in FIG. 6B, the descriptor array
DA is subdivided in two sub-arrays SDA1, SDA2 which are
arranged in a single group. Therefore, all the sub-array SDAk
are compressed using a same codebook CBK1. Specifically:

the first sub-array SDA1 is formed by the element sequence

al, a2, a3, ad, a5, a6, a7, a8, and

the second sub-array SDA2 is formed by the element

sequence al3, al4, al5, al6, a9, al10, all, al2.

In this case:

the first and the fourth elements ai of each sub-array SDAk

belong to the first correlation family CF1;

the second and the third elements ai of each sub-array

SDAk belong to the second correlation family CF2;
the fifth and the eighth elements ai of each sub-array SDAk
belong to the third correlation family CF3, and

the sixth and the seventh elements ai of each sub-array

SDAk belong to the fourth correlation family CF4.

The codebook CBK1 for compressing the generic sub-
array SDA1, SDA2 includes N4 codewords CWj, wherein
each codeword CWj has the first and the fourth elements
belonging to the first correlation family CF1, the second and
the third elements belonging to the second correlation family
CF2, the fitth and the eighth elements belonging to the third
correlation family CF3, and the sixth and the seventh ele-
ments belonging to the third correlation family CF3.

With N4 different codewords CWj, the minimum number
of bits required to identify all the codewords is equal to
2*(log, N4).

According to another exemplary embodiment of the
present invention illustrated in FIG. 6C, the descriptor array
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DA is subdivided in six sub-arrays SDA1-SDA6, four of
which (SDA1-SDA4) are arranged in a first group, and two of
which (SDAS5, SDAG6) are arranged in a second group. There-
fore, the sub-arrays SDA1-SDA4 are compressed using a
same first codebook CBKI1, while the sub-arrays SDAS-
SDA6 are compressed using a same second codebook CBK2.
Specifically:

the first sub-array SDA1 is formed by the element sequence

a5, al, a2;

the second sub-array SDA2 is formed by the element

sequence a8, a4, a3;

the third sub-array SDA3 is formed by the element

sequence a9, al3, al4;

the fourth sub-array SDA4 is formed by the element

sequence al2, al6, al5;

the fifth sub-array SDAS is formed by the element

sequence a6, a7, and the sixth sub-array SDAG6 is formed
by the element sequence al0, all.

In this case:

the first elements ai of each sub-array SDA1-SDA4 of the

first group belong to the third correlation family CF3;
the second elements ai of each sub-array SDA1-SDA4 of
the first group belong to the first correlation family CF1;
the third elements ai of each sub-array SDA1-SDA4 of the
first group belong to the second correlation family CF2,
and

the first and second elements ai of each sub-array SDA5-

SDAG6 of the second group belong to the fourth correla-
tion family CF4.

The codebook CBK1 for compressing the generic sub-
array SDA1-SDA4 belonging to the first group includes N5
codewords CWj, wherein each codeword CWj has the first
element belonging to the third correlation family CF3, the
second element belonging to the first correlation family CF1,
and the third element belonging to the second correlation
family CF2. The codebook CBK2 for compressing the
generic sub-array SDAS5-SDA6 belonging to the second
group includes N6 codewords CWj, wherein each codeword
CWj has the first and second elements belonging to the fourth
correlation family CF4.

With N5+N6 different codewords CWj, the minimum
number of bits required to identify all the codewords is equal
to 4*(log, N5)+2*(log, N6).

According to another exemplary embodiment of the
present invention illustrated in FIG. 6D, the descriptor array
DA is subdivided in eight sub-arrays SDA1-SDAS, four of
which (SDA1-SDA4) are arranged in a first group, and four of
which (SDA5 -SDAS8) are arranged in a second group. There-
fore, the sub-arrays SDA1-SDA4 are compressed using a
same first codebook CBKI1, while the sub-arrays SDAS-
SDAS are compressed using a same second codebook CBK2.
Specifically:

the first sub-array SDA1 is formed by the element sequence

a5, al;

the second sub-array SDA2 is formed by the

sequence a8, a4;

element

the third sub-array SDA3 is formed by the element
sequence a9, al3;

the fourth sub-array SDA4 is formed by the element
sequence al2, al6;

the fifth sub-array SDAS is formed by the element
sequence a6, a2;

the sixth sub-array SDA6 is formed by the element

sequence a7, a3;
the seventh sub-array SDA7 is formed by the
sequence al0, al4, and

element
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the eighth sub-array SDAS8 is formed by the element

sequence all, al5.
In this case:
the first elements ai of each sub-array SDA1-SDA4 of the
first group belong to the third correlation family CF3;

the second elements ai of each sub-array SDA1-SDA4 of
the first group belong to the first correlation family CF1;

the first elements ai of each sub-array SDA5-SDAS of the
second group belong to the fourth correlation family
CF4, and

the second elements ai of each sub-array SDA5-SDAS of
the second group belong to the second correlation family
CF2.

The codebook CBK1 for compressing the generic sub-
array SDA1-SDA4 belonging to the first group includes N7
codewords CWj, wherein each codeword CWj has the first
element belonging to the third correlation family CF3, and the
second element belonging to the first correlation family CF1.
The codebook CBK2 for compressing the generic sub-array
SDAS5-SDAS8 belonging to the second group includes N8
codewords CWj, wherein each codeword CWj has the first
elements belonging to the fourth correlation family CF4 and
the second elements belonging to the second correlation fam-
ily CF2.

Therefore, with N7+N8 different codewords CWj, the
minimum number of bits required to identify all the code-
words is equal to 4*(log, N7)+4*(log, N8).

Naturally, the concepts of the present invention are also
applicable with subdivisions into a different number of sub-
arrays and/or with a different number of codebooks. More-
over, even if in the present description reference has been
made to the compression of a SIF descriptor calculated on a
grid including 4x4 cells with eight bins per histogram, similar
consideration apply if the number of cells and/or the number
of bins per histogram is different, as well as descriptors of
other types are considered.

Compared to the known solutions, with a same compres-
sion distortion, the combined use of subdividing the descrip-
tor array DA in sub-arrays SDAk and employing a same
codebook CBKy for more than one sub-arrays SDAk allows
to drastically reduce the memory space required to store the
codebook(s) CBKy used to compress the descriptor array DA.
This is a great advantage, since, as already mentioned above,
the hardware employed for image analysis applications (e.g.,
Graphic Processing Units, GPU) may be equipped with not so
capacious memories. Another advantage given by the com-
bined use of subdividing the descriptor array DA in sub-
arrays SDAk and employing a same codebook CBKy for
more than one sub-arrays SDAk consists in that the training
procedure for the generation of the codebook(s) CBKy results
to be faster.

The compression operations carried out in phase 140 of the
extraction procedure 100 (see FIG. 1) on each received
descriptor D generate as a result a corresponding compressed
descriptor array CDA, which approximate the value taken by
the respective descriptor array DA. More specifically, for
each codebook CBKYy used to compress the descriptor array
DA, each codeword CWj of such codebook CBKy is identi-
fied by a corresponding compression index Cys; if the code-
book CBKy is formed by a number N of different codewords
CWj, the compression index Cy is formed by at least log, N
bits. For a descriptor array DA which has been subdivided
into a set of sub-arrays SDAK, the corresponding compressed
descriptor array CDA comprises a compression index Cy for
each sub-array SDAKk of the set, wherein each compression
index Cy identifies the codeword CWj of the codebook CBKy
used to approximate said sub-array SDAk.
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Compression of the Coordinates (Phase 150)

According to an embodiment of the present invention, the
amount of data to be managed (e.g., to be memorized and/or
transmitted) for performing image analysis operations is fur-
ther reduced by compressing the coordinates C of the key-
points KP belonging to the optimal subset SUB calculated at
phase 130 of the extraction procedure 100 (see FIG. 1).

FIG. 7A illustrates an exemplary distribution of the key-
points KP of the optimal subset SUB within a bi-dimensional
space corresponding to the query image 115; each keypoint
KP is associated with a corresponding pair of spatial coordi-
nates C identifying the location of such keypoint KP within
the query image 115.

Firstly, the coordinates C of all the keypoints KP of the
subset SUB are quantized. For this purpose, a nxm grid is
superimposed over the query image 115. In the example
illustrated in FIG. 7B, the grid has n=10 rows and m=15
columns.

A bi-dimensional histogram is then generated by counting
for each cell of the grid (corresponding to a bin of the histo-
gram) the number of keypoints KP which lie therewithin.
FIG. 7C is an exemplary graphical depiction of the histogram
obtained by superimposing the grid of FIG. 7B over the set of
keypoints KP of FIG. 7A. In the graphical depiction of FIG.
7C, the cells void of keypoints KP are colored in black, while
the cells including at least a keypoint KP are colored in gray.
In the example at issue (wherein the cells including the high-
est number of keypoints include two keypoints), the cells
including a single keypoint KP are colored in dark grey, while
those including two keypoints KP are colored in a lighter
grey.

The histogram obtained from the keypoint counting has a
great number of bins whose frequency is equal to zero, i.e.,
with the corresponding cell that does not include any keypoint
KP (the black cells depicted in FIG. 7C).

The data representing the histogram may be advanta-
geously compressed taking into considerations that the por-
tions thereof corresponding to the zero frequency bins only
provide the information that its corresponding cell does not
include any keypoint.

For this purpose, the rows and the columns of the grid
which are entirely formed by cells that does not include any
keypoints KP can be advantageously removed. However,
since the removal of such rows and/or columns would alter
the absolute and relative positions of the keypoints KP, an
indication of the positions of all the rows and columns void of
keypoints KP (comprising those corresponding to the rows
and/or columns to be removed) should be recorded.

For this purpose, two arrays r and ¢ are defined in the
following way:

the array r is an array including an element for each row of

the grid, wherein the generic element of the array is set
to a first value (e.g., 0) if the corresponding cell of the
grid does not include any keypoint KP, and it is set to a
second value (e.g., 1) if the corresponding cell of the grid
includes at least a keypoint KP, and

the array c is an array including an element for each column

of'the grid, wherein the generic element of the array is set
to a first value (e.g., 0) if the corresponding cell of the
grid does not include any keypoint KP, and it is set to a
second value (e.g., 1) if the corresponding cell of the grid
includes at least a keypoint KP.

Once the arrays r and ¢ have been generated, the next step
provides for identify the rows and/or the columns which are
entirely formed by cells that does not include any keypoints
KP are identified. Making reference to the example at issue,
such rows and columns are depicted in black in FIG. 7D.
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The rows and/or the columns of the grid which are entirely
formed by cells that do not include any keypoints KP are then
removed, and the resulting portions of the grid are compacted
in order to fill the empty spaces left by the removals. Thus, in
the resulting (compacted) grid, referred to as rank-1 support,
all the rows and all the columns include at least one cell
comprising at least one keypoint KP. The histogram over the
rank-1 support corresponding to the example at issue is illus-
trated in FIG. 7E.

From such histogram two different pieces of information
can be extracted, i.e.:

1) the positions of the cells of the rank-1 support including

at least one keypoint

KP, and

2) for each cell of the rank-1 support identified at point 1),

the number of keypoints KP included therein.

Advantageously, as proposed by S. Tsai, D. Chen, G.
Takacs, V. Chandrasekhar, J. P. Singh, and B. Girod in “Loca-
tion coding for mobile image retrieval”, Proc. Int. Mobile
Multimedia Conference (MobiMedia), 2009, the information
corresponding to point 1) may be extracted exploiting a so-
called “histogram map”, while the information correspond-
ing to point 2) may be arranged in a so-called “histogram
count”.

The histogram map is a bi-dimensional mapping of the
histogram over the rank-1 support which identifies the bins
thereof having a frequency equal to or higher than 1. The
histogram map corresponding to the histogram over the
rank-1 support of FIG. 7E is illustrated in FIG. 7F.

The histogram map can be represented with a correspond-
ing matrix, whose generic element is equal to zero if the
corresponding cell of the rank-1 support does not include any
keypoint KP, and is equal to one if the corresponding cell of
the rank-1 support does include at least one keypoint KP. The
matrix of the histogram map illustrated in FIG. 7F is the
following one:

10100000
00000O0O01
01001000
01000010
00010001
00000111
1000000O00O0

According to an embodiment of the present invention, the
information provided by the histogram map can be advanta-
geously compressed using an entropic coding optimized
based on the statistical behavior of exemplary rank-1 support
histograms learned from the analysis of a large number of
training images.

From such analysis it has been found that the locations of
the keypoints KP within the generic image are such to entail
a common statistical distribution of the “1” within the matrix
of the histogram map.

The entropic coding is carried out in the following way.

The matrix of the histogram map is scanned (e.g., column
by column) so as to subdivide it into a plurality of words each
having a same length x. Based on the statistical analysis
carried out on the training images, a word histogram is gen-
erated including a bin for each possible value the x-tuple of
the generic word may take, with the frequency of each bin that
indicates the probability that the x-tuple of the word takes the
value associated with such bin. Briefly, such statistical analy-
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sis has been carried out by making the assumption that the
elements of the matrix of the histogram map are independent
of'each another. By analyzing a very high number of training
images, it can be identified which is the probability thata “1”
occurs in the matrix every n “0”; then, the word histogram is
generated based on such probability.

FIG. 8A illustrates an example of a word histogram in
which the length x of the words is equal to six, and wherein
each bin is identified by the decimal value of the correspond-
ing x-tuple value. As expected, the highest frequency corre-
sponds to the x-tuple (0,0,0,0,0,0), since there is a very higher
probability that the generic cell of the rank-1 support does not
include any keypoint KP. The following highest probability is
the one corresponding to a single keypoint KP for cell
(x-tuple (1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,
0), (0,0,0,0,1,0), (0,0,0,0,0,1)), then the one corresponding to
two keypoints KP for cell, and so on.

The words are encoded with an entropic coding technique
(e.g., the Huffman technique or the Arithmetic coding tech-
nique) by using for each word a coded word bei (i=1, 2, . . .)
having a number of bits that depends on the probability of the
corresponding bin in the word histogram. The higher the
probability of the word, the smaller the number of bits of the
coded word bci used to encode such word.

The other information that can be extracted from the his-
togram over the rank-1 support regards the number of key-
points KP which are included in each cell of the histogram
map comprising at least one keypoint KP. Such information is
arranged in a corresponding histogram, referred to as histo-
gram count. Each bin of the histogram count corresponds to a
corresponding one among the cells of the rank-1 support that
includes at least one keypoint KP. The histogram count lists
for each bin the number of keypoints KP included in the
corresponding cell. The histogram map of the example at
issue is illustrated in FIG. 8B, wherein 11 cells includes a
single keypoint KP each and two cells include two keypoints
KP each. The bins of the histogram map of FIG. 8B are
ordered following a column-wise scan of the rank-1 support.

The keypoint counting information provided by the histo-
gram count is encoded into a set of coded words wj (j=1, 2, .
. .) of different lengths, with each coded word wj of the set
that indicates which bin(s) of a respective set of histogram
count bins correspond to a number of keypoints KP greater
than or equal to a certain value.

More specifically, if the highest number of keypoints KP
counted within each bin is equal to Nmax, such set of coded
words wj comprises a number of coded words wj equal to
Nmax-2. The generation of each coded word wj is carried out
by performing a corresponding one among a set of Nmax-2
procedure steps. According to an embodiment of the present
invention, such procedure steps are described hereinbelow.

Step 1—A first coded word w1 is set to include an element
for each bin of the histogram map. Therefore, the first coded
word w1 includes a number of elements equal to the number
bins of the histogram map. Each element of the first coded
word w1 is set to a first value (e.g., “1”) if the corresponding
bin of the histogram count corresponds to a number of key-
points KP higher than one, otherwise is set to a second value
(e.g., “0”). If Nmax is higher than 2, a second step is per-
formed for generating a second coded word w2, otherwise the
process is termined. In the latter case, the whole information
provided by the histogram count results to be coded with the
first coded word w1 only.

Step j (7>1)—A j-th coded word wj is generated. The j-th
coded word wj is set to include an element for each bin of the
histogram map including more than j keypoints KP. There-
fore, the j-th coded word wj includes a number of elements
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equal to or lower than the j-1 coded word w(j—1). Each
element of the j-th coded word wj is set to the first value if the
corresponding bin of the histogram count corresponds to a
number of keypoints KP higher than j, otherwise is set to the
second value. If Nmax is higher than j+1, a (j+1)-th step is
performed, for generating a (j+1)-th coded word w(j+1), oth-
erwise the process is termined. In the latter case, the whole
information provided by the histogram count is coded with
the coded words w1-wj.

The compression operations carried out in phase 150 of the
extraction procedure 100 (see FIG. 1) allow to obtain for the
coordinates C of the keypoints KP belonging to the subset
SUB a corresponding compressed coordinate set CC com-
prising:

the array r and the array c;

the coded words bci, and

the coded words wj.

The amount of data required for managing (memorizing
and/or transmitting) the compressed coordinate set CC is
sensibly lower than the amount of data required for managing
the set of (uncompressed) coordinates C.

Matching Procedure (FIG. 9)

FIG. 9 illustrates in terms of functional blocks an image
analysis procedure according to an embodiment of the
present invention, hereinafter referred to as “matching proce-
dure” and identified with the reference 900, directed to per-
form the comparison between two images I1, 12, by exploit-
ing for each image a respective optimal subset of keypoints
and the corresponding compressed descriptors and coordi-
nates generated with the extraction procedure 100 of FIG. 1.

The steps of the matching procedure 900 may be carried
out by proper processing units; for example, each processing
unit may be a hardware unit specifically designed to perform
one or more steps of the procedure. A possible scenario may
provide for a user (client side) which desires to exploit an
image comparison service (server side) for comparing the
image [1 with the image 12. In this case, the images 11 and 12
may be processed at the client according to the extraction
procedure 100 of FIG. 1 for the generation of the optimal
subset of keypoints and the corresponding compressed
descriptors and coordinates; then, the optimal subset of key-
points and the corresponding compressed descriptors and
coordinates are sent to the server, which performs the match-
ing procedure 900 exploiting the received data and then pro-
vides the results to the client. In this case, the extraction
procedure 100 may be carried out by processing units located
at the client, e.g., by means of a user’s smartphone, while the
matching procedure 900 may be carried out by processing
units located at the server, e.g., by means of one or more
server units adapted to offer image comparison services.
Another possible scenario may provide instead that the
matching procedure 900 is directly performed at the client.
Mixed scenarios are also contemplated, in which the match-
ing procedure 900 is carried out at the client with the com-
pressed descriptors and coordinates sent by the server.

The compressed coordinates of the image 11 are identified
with reference CC1, while the compressed descriptors of the
image I1 are identified with reference CDAI1. Similarly, the
compressed coordinates of the image 12 are identified with
reference CC2, while the compressed descriptors of the
image 12 are identified with reference CDA2.

The compressed descriptors CDA1 of the first image 11 are
decompressed in order to retrieve corresponding (decom-
pressed) descriptors D1 (phase 902). Similarly, the com-
pressed descriptors CDA2 ofthe second image 12 are decom-
pressed in order to retrieve corresponding (decompressed)
descriptors D2 (phase 904). The decompression of the
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descriptors may be carried out by means of reversed versions
of'the compression operations performed in phase 140 of the
extraction procedure 100. Making reference to descriptors of
the SIFT type, after phases 902 and 904 the descriptors D1
and D2 are thus represented by corresponding descriptor
arrays formed by 128 items.

At phase 906, matches among descriptors D1 of the first
image 11 and descriptors D2 of the second image 12 are
formed by exploiting any one among the feature matching
algorithms known in the art, such as for example the Euclid-
ean distance ratio test.

Then, at phase 908, geometric verification operations are
performed for ascertaining which matches among those
formed at phase 906 are correct (inliers) and which matches
are uncorrected (outliers). As it is known to those skilled in
the art, an operation of this type requires, in addition to the
descriptors, the coordinates of each keypoint whose corre-
sponding descriptor has been matched with the descriptor of
another one keypoint. For this purpose, the compressed coor-
dinates CC1 ofimage I1 and the compressed coordinates CC2
of'the image 12 should be decompressed as well, for example
by means of reversed versions of the compression operations
performed in phase 150 of the extraction procedure 100. The
phase dedicated to the decompression of the compressed
coordinates CC1 is identified in FIG. 9 with reference 910,
while the phase dedicated to the decompression of the com-
pressed coordinates CC2 is identified in FIG. 9 with reference
912. Once the inliers have been identified, the geometric
verification may provide as a result a parameter DOM indica-
tive of the degree of match between image I1 and 12. For
example, if such parameter DOM is higher than a predeter-
mined threshold, the images I1 and 12 are reputed to depict a
same object(s)/scene(s).

Additionally, localization operations (phase 914) may be
further carried out for retrieving the location(s) L of such
same object(s)/scene(s) within the two images 11, 12.

Making reference to the previously mentioned client-
server image comparison scenario, since the matching proce-
dure 900 is configured to operate with a reduced number of
keypoints (only the ones belonging to the subset SUB gener-
ated by means of the extraction procedure 100), and since the
descriptors and the coordinates of such reduced number of
keypoints are received in a compressed way, with the pro-
posed solution the overall amount of data to be sent from the
client to the server is drastically reduced compared to the
known solutions.

Retrieval Procedure (FIG. 10)

FIG. 10 illustrates in terms of functional blocks an image
analysis procedure according to an embodiment of the
present invention, hereinafter referred to as “retrieval proce-
dure” and identified with the reference 1000, in which a query
image—such as the query image 115 of FIG. 1—depicting an
object/scene to be recognized is compared with a plurality of
model images—each one depicting a respective known
object/scene—stored in a model database, in order to retrieve
the model image(s) depicting the same object/scene depicted
in the query image.

Like the matching procedure 900 of FIG. 9, the steps of the
retrieval procedure 1000 may be carried out by proper pro-
cessing units; for example, each processing unit may be a
hardware unit specifically designed to perform one or more
steps of the procedure. A typical scenario may provide for an
user (client side) which desires to exploit an image recogni-
tion service (server side) in order to automatically recognize
an object/scene depicted in a query image 115. In this case,
the query image 115 may be processed at the client according
to the extraction procedure 100 of FIG. 1 for the generation of

20

30

40

45

50

55

24

the optimal subset of keypoints SUB and the corresponding
compressed descriptors CDA and coordinates CC; then, the
optimal subset of keypoints and the corresponding com-
pressed descriptors and coordinates are sent to the server,
which performs the retrieval procedure 1000 exploiting the
received data and then provides the results to the client. The
plurality of model images to be used for the recognition of the
object/scene depicted in the query image 115 are stored in a
model database 1002, which is located at server side.

The compressed descriptors CDA are decompressed in
order to retrieve corresponding (decompressed) descriptors
DD (phase 1004). The decompression of the descriptors may
be carried out by means of reversed versions of the compres-
sion operations performed in phase 140 of the extraction
procedure 100. Again, making model to descriptors of the
SIFT type, after phase 1004 the descriptors DD are thus
represented by corresponding descriptor arrays formed by
128 items.

Since a standard object recognition procedure typically
require the execution of comparison operations between the
query image and a very high number of model images (for
example, the model images included in the model database
1002 may be a few millions), such procedure is both time and
memory consuming. For this purpose, a known solution pro-
vides for performing such comparison operations in two dis-
tinct phases. Instead of directly comparing the descriptors of
the query image with the descriptors of all the model images,
a fast, rough, comparison is preliminarly made by among
visual words extracted from the query image and visual words
extracted from the model images; then, the (refined) compari-
son of the descriptors is carried out only among the descrip-
tors of the query image and the descriptors of a reduced set of
model images chosen based on the preliminary comparison.
A visual word is an array obtained by performing a vector
quantization of a descriptor; in other words, each visual word
is a codeword of a visual codebook. The generation of the
visual words is carried out for each descriptor of the query
image and each descriptor of the model images. For example,
the preliminary comparison is carried out by counting the
number of visual words in common between the query image
and each model image. Then, for each model image, a simili-
tude rank is calculated based on the counts of the number of
visual words in common. Similar considerations apply if the
similitude rank is generated by comparing the visual words
using alternative methods. In this, way, the refined compari-
son between descriptors may be advantageously carried out
only among the query image and the model images having the
highest similitude ranks (i.e., the ones having the highest
numbers of visual words in common with the query image).
This approach, which is derived from the text analysis field, is
also known as “ranking by means of Bag of Features (BoF)”.

Making reference again to FIG. 10, in order to allow the
carrying out of the ranking by means of BoF, visual words VD
for each descriptor of the query image and visual words VDR
for each descriptor of each model image have to be generated.

It is pointed out that in order to allow the comparison
between visual words, both the visual words VD and the
visual words VDR should be generated using a same code-
book.

While the visual words VD of the query image 115 have to
be generated every time the retrieval procedure 1000 is per-
formed (phase 1006), in order to drastically reduce the opera-
tion times, the generation of the visual words VDR of the
model images may be advantageously carried out only once,
and then the resulting plurality of visual words VDR may be
directly stored in the model database 1002; alternatively, the
visual words VDR may be periodically updated.
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Having generated for each descriptor DD of the query
image a corresponding visual word VD, in phase 1008 the
ranking by means of BoF procedure is then carried out. In this
way, for each model image, a rank index is calculated by
counting the number of visual words VDR of such model
image which are also visual words VD of the query image.
Such counting may be carried out using the known ranking by
means of BoF implementation also known as Invertedindex.
However, similar considerations apply in case different
implementations are applied. Once all the rank indexes have
been calculated, a list is generated in which the model images
of the database are sorted according to a rank index decreas-
ing order. Then, a set SR of model images having the highest
rank index values is selected for being subjected to the sub-
sequent (refined) comparison operations.

It is pointed out that since according to an embodiment of
the present invention the number of descriptors of each image
is advantageously reduced, corresponding only to the optimal
subset SUB of keypoints which are considered relevant (see
phase 130 of the extraction procedure 100 of FIG. 1), the
amount of data required for carrying out the ranking by means
of BoF procedure (phase 1008) which has to be loaded in the
working memory (e.g., in RAM banks located on the server
side) is strongly reduced, drastically improving the speed of
the process. Moreover, since the comparisons are made by
taking into consideration only the descriptors of the keypoints
reputed relevant, the precision of the comparison is increased,
because the noise is reduced. In order to further improve the
speed and the precision, optimal subset including a reduced
number of descriptors are also generated for each model
image included in the model database 1002.

It has been found that the number of keypoints forming the
optimal subset SUB strongly influence the outcome of the
ranking by means of BoF. Indeed, with a same number of
considered images, the probability that the object/scene
depicted in the query image 115 is also depicted in at least one
of'the model images belonging to the selected set SR of model
images increases as the number of keypoints of the optimal
subset SUB decreases. However, if such number of keypoints
of the optimal subset SUB falls below a lower threshold, the
performances of the procedure decrease, since the number of
keypoints included in the subset SUB become too small for
satisfactorily representing each image.

At this point, a second, refined comparison is carried out
between the query image 115 and the set SR of model images
(phase 1010). One of the already known feature matching
procedures may be employed for matching descriptors DD of
the query image 115 with descriptors of the model images of
the set SR (sub-phase 1012), e.g., by calculating Euclidean
distances among the descriptors, and then a geometric veri-
fication is performed for ascertaining which matching are
inliers and which are outliers (sub-phase 1014). In this way, if
it exists, the model image RI of the set SR depicting an
object/scene depicted also in the query image 115 is retrieved
at the end of the phase.

According to an embodiment of the present invention,
instead of directly performing feature matching operations on
the descriptors DD of the query image 115 and on the descrip-
tors of the model images of the set SR, the feature matching
operations are carried out on compressed versions thereof
obtained by subdividing the corresponding descriptor arrays
into sub arrays and compressing each sub-array by means of
a codebook based on vector quantization. For this purpose,
the descriptors DD of the query image 115 are compressed at
phase 1016, for example by subdividing the corresponding
descriptor arrays in four sub-arrays and compressing each
one of said four sub-arrays with a respective codebook. Simi-

15

25

30

35

40

45

55

26

larly to the generation of the visual words, the model database
1002 stores for each model image corresponding pre-calcu-
lated compressed versions thereof, which have been com-
pressed using the same codebooks used for compressing the
descriptors DD of the query image 115. According to this
embodiment, the feature matching (sub-phase 1012) can be
performed in a very fast and efficient way. Indeed, since the
feature matching is carried out in the compressed space (both
the descriptors of the query image and of the model images
are compressed), and since the number of descriptors to be
considered is reduced (corresponding only to the keypoints of
the optimal subset), it is possible to directly load in the main
memory also the data representing the model images of the
model database. Moreover, since the compression of the
descriptor arrays has been carried out by subdividing the
descriptor arrays in sub-arrays, thus strongly reducing the
number of codewords of the corresponding codebooks, a list
including all the possible Euclidean distances among each
codeword of each codebook may by pre-calculated in
advance, and loaded in the main memory, further increasing
the speed of sub-phase 1012. Similar considerations apply if
the feature matching is carried out by exploiting a different
algorithm which does not make use of the Euclidean dis-
tances.

According to an embodiment of the present invention,
sub-phase 1012 may be further improved by compressing the
sub-arrays of each descriptor using a same codebook, using
an approach similar to that used in phase 140 of the extraction
procedure 100 of FIG. 1.

Since the geometric verification (sub-phase 1014)
requires, in addition to the descriptors, the coordinates of the
keypoints whose corresponding descriptors have been
matched with descriptors of another keypoints, the com-
pressed coordinates CC of the keypoints of the query image
115 should be decompressed as well (phase 1018).
Codebook Compression (FIGS. 11 and 12)

All the above described solutions provide for compressing
the descriptor arrays through vector quantization, by exploit-
ing at least one codebook. As described in detail in the fore-
going, a codebook is formed by a plurality of codewords, each
approximating a corresponding set of descriptor arrays.
Codebooks for compressing descriptor arrays to be used in
image analysis procedures are formed by a high amount of
data, and therefore entail the occupation of a large amount of
working memory. For example, considering descriptors of the
SIFT type, a typical codebook for compressing a descriptor
array may occupy few hundreds of MB. According to the
embodiments of the inventions previously described, the
memory occupation of the codebook is advantageously
reduced by subdividing the descriptor array into sub-arrays
and compressing at least two sub-arrays using a single, same
codebook. Thanks to this approach, the memory occupation
of the codebook can be reduced to few MBs, such as for
example 4-5 MBs. However, in some cases such memory
occupation still could be excessive, especially considering
when the codebook has to be stored in a unit having a low
storage capability, such as for example in a dedicated chip
installed on a portable device.

FIG. 11 is a flow chart 1100 illustrating the main phases of
a codebook compression procedure according to an embodi-
ment of the present invention.

The procedure is aimed at compressing a codebook CBK
formed by N K-tuple codewords CW so that its memory
occupation is restricted below a given maximum threshold
THC.

The first phase of the procedure (block 1110) provides for
representing the codebook CBK in a matrix form. For this
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purpose, a matrix C is generated including a corresponding
row for each codeword CW of the codebook CBK, with each
row of the matrix C that includes an item for each one of the
K elements forming the corresponding codeword CW. There-
fore, the matrix C has a NxK size.

The next phase (block 1120) comprises generating a matrix
C' of NxK size from the matrix C by calculating an average
1xK array m obtained from the average of all N rows of the
matrix C and then subtracting such average array m from each
row of the matrix C. This operation is performed since such
average strongly influences the results of the subsequent
operations of the procedure.

The next phase (block 1130) of the procedures provides for
eigenvector factorizing the matrix C' in the form U*S*V7,
wherein U is a NxK matrix, and S and V are KxK matrices
(V¥is the transpose of V), with U and V that are orthonormal
matrices, and S is a diagonal matrix, whose diagonal items
Sj,j are the singular values of C', and generally decrease as the
index j increases. For example, the product U*S*VZ may be
obtained from C' by using the known Singular Value Decom-
position (SVD) factorization.

With this peculiar type of factorization, the information
content of C' is concentrated mainly in the first (i.e., the
leftmost) columns of U and V, with the information content
corresponding to a generic j-th column CUj of U and to a
generic j-th column CVj of V that is higher than the informa-
tion content corresponding to the (j+1)-th column CU(+1) of
U and to the (j+1)-th column CV(j+1) of V, respectively.

The subsequent phase (block 1140) provides for approxi-
mating the matrix C' with the product C'm=Um*Sm*Vm?,
wherein:

Um is a matrix of size NxK', with K'=K-R, obtained from

U by eliminating the last (i.e., the rightmost) R columns
thereof;

Sm is a matrix of size K'xK', obtained from S by eliminat-

ing the last (i.e., the rightmost) R columns and the last
(i.e., the lowermost) R rows thereof, and

Vm is a matrix of size KxK', obtained from V by eliminat-

ing the last (i.e., the rightmost) R columns thereof.

Since with SVD factorization the information content of C'
has been concentrated mainly in the first (i.e., the leftmost)
columns CUj, CVj of U and V, approximating C' by eliminat-
ing the rightmost columns CUj, CVj of U and V involves the
lowest loss of information content for the same number of
eliminated columns.

The next phase (block 1150) comprises selecting a particu-
lar compact numeric representation, e.g. through selecting a
particular data type (e.g., the intl6 data type or 16 bit signed
integer), multiplying each item of Vm by a coefficient SC
equal to the ratio between the highest value that can be rep-
resented with the selected data type (e.g., 32767 in case of
int16 datatype) and the highest absolute value among the
absolute values of the items of Vm, and representing each
item (amplified through SC) of Vm using the selected data
type, obtaining a corresponding compressed matrix Vm'.

The following phase (block 1160) provides for generating
a NxK' matrix US by multiplying each item of the matrix
Um*Sm by the coefficient SC, and then quantizing each item
US(i,j) of US into a corresponding quantized item US'(i,j)
through scalar quantization taking into account that the infor-
mation content corresponding to the generic j-th column
CUS;j of US decreases as j increases. Specifically:

1) each item US(i,1) of the first column CUS1 of US is
quantized into a corresponding quantized item US'(i,1) using
a number Q1 of different quantization levels QL1(y),

y=1,..., QlL;
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2) each item US(4,2) of the second column CUS2 of US is
quantized into a corresponding quantized item US'(i,2) using
a number Q2=Q1 of different quantization levels QL2(y),
y=1....,Q2;

3) each item US(i,3) of the third column CUS3 of US is
quantized into a corresponding quantized item US'(i,3) using
a number Q3=Q2 of different quantization levels QL3(y),

y=1,...,Q3;

K") each item US(1,K") of the K'-th column CUSK' of US is
quantized into a corresponding quantized item US'(i,K')
using a number QK'=Q(K'-1) of different quantization levels
QLK'(y), y=1, ..., QK
obtaining thus a corresponding compressed NxK' matrix US'.

Then (block 1170), each possible quantization level QL
(¥),j=1to K', y=1to Qj, is associated to a respective numeric
index INj(y), and a NxK' size index matrix X is generated
whose generic item Xi,j is set to the numeric index INj(y)
associated to the quantization level QLj(y) assumed by the
quantized item US'(i,j) of the matrix US'". For example, the
numeric indexes INj(y) may be set in such a way that
INj(1)=0, INj(2)=1, . . ., INj(Q1)=Qi-1, so that the generic
item Xi,j of the index matrix X can be represented with 1n,Qj
bits.

According to an embodiment of the present invention, the
items US(i,j) of the matrix US are quantized into the corre-
sponding quantized items US'(i,j) of the matrix US' through
non-uniform quantization. Therefore, according to this
embodiment of the invention, the Qj quantization levels QL
(¥), y=1 to Qj, used to generate the quantized items US'(i,)),
i=1 to N, of the j-th column CUS'j of US' are non-uniformly
distributed, i.e., with QLj(y)-QLj(y-1) that is in general dif-
ferent than QL;j(y+1)-QLj(y). In this case, an index quanti-
zation mapping function is generated in form of a table listing
for each numeric index INj(y), y=1 to Qj the corresponding
associated quantization level QLj(y).

According to a further embodiment of the present inven-
tion, in order to simplify the quantization mapping function,
the items US(i,j) of the matrix US are quantized into the
corresponding quantized items US'(i,j) of the matrix US'
through uniform quantization. According to this embodiment
of'the invention, the Qj quantization levels QLj(y), y=1 to Qj,
used to generate the quantized items US'(i,j), i=1 to N, of the
j-th column CUS'j of US' are uniformly distributed, i.e., with
QLj(y)-QLj(y-1) that is equal to QLj(y+1)-QLj(y). In this
case, the index quantization mapping function may be simply
formed by a base value equal to QLj(1) and a step value equal
to (QLj(Q)-QLj(1))/(Qj-1): given a numeric index INj(y),
the corresponding quantization level QLj(y) is obtained by
multiplying such index INj(y) for the step value and summing
the result to the base value.

Therefore, at the end of the last phase of the codebook
compression procedure illustrated in FIG. 11, the codebook
CBK may be stored in a memory unit (for example, integrated
on a chip installed on a portable device) occupying a memory
space MS formed by:

the memory space MS1 for storing the average array m of

C; the memory space MS2 for storing the index matrix
X;

the memory space MS3 for storing the quantization map-

ping function, and

the memory space MS4 for storing the compressed matrix

V'

It is underlined that instead of having to directly store the
compressed matrix US', according to this embodiment of the
present invention the quantized items US'(i,j) of said matrix
US' can be advantageously retrieved from the numeric
indexes INj(y) forming the items Xi,j of the index matrix X
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(with said numeric indexes INj(y) that occupy a lower amount
of memory with respect to the quantized items US'(i,))).

In order to respect the above mentioned memory occupa-
tion maximum constraint, MS1+MS2+MS3+MS4 have to be
lower than the maximum threshold THC.

On this regard:

MS1 is equal to K multiplied by the memory occupation of

the single item of C;

MS?2 is equal to N multiplied by the memory occupation
MSR of a generic row RXi of X (i.e., the total number of
bits required to represent all the items of such row),
wherein MSR is equal to the sum of:

1) the memory occupation of the first item Xi,1 of a
generic row RXi of X, i.e., the number of bits (In,Q1)
for representing one of the Q1 numeric indexes IN1
). y=1....QL

2) the memory occupation of the second item Xi,2 of a
generic row RUSiof US', i.e., the number ofbits (In,Q2)
for representing one of the Q2 numeric indexes IN2(y),

y=1,...,Q2

K") the memory occupation of the K'-th item Xi,K' of a
generic row RUSi of US!, i.e., the number of bits
(In,QK") for representing one of the QK' numeric
indexes INK'(y), y=1, ..., QK";

MS3 is given by the type of quantization used for generat-

ing the items of US', and

MS4 is given by KxK' multiplied by the data type selected

for representing each item of Vm'.

The choice of K' (number of columns of Vm', US' and X)
and of the number Q1, Q2, . . ., QK' of quantization levels
QLj(y) strongly influences the size of MS2, MS3 and MS4.
Since MS2>>MS3+MS4, according to an embodiment of the
present invention K' and Q1, Q2, . . ., QK' are calculated by
restricting MS2 below a given threshold.

FIG. 12 is a flow chart 1200 illustrating the main phases of
a method for selecting the values of K' and Q1,Q2, ..., QK'
according to an embodiment of the present invention.

The first phase (block 1210) provides for calculating the
energy ES of the matrix S. In the present document, with the
term “energy of a matrix” it is intended the square of the
Frobenius norm of said matrix, while with the term “energy of
a matrix item” it is intended the absolute square of such item.
As it is well known to those skilled in the art, the Frobenius
norm of a matrix is given by the square root of the sum of the
absolute squares of its items.

Then (block 1220), a target memory occupation value
THM for MS2 is set. With such target memory occupation
value THM, the memory occupation MSR of a generic row
RXi of X becomes THM/N. Therefore, THM corresponds to
the target total number of bits for representing all the items of
X.

The next phase (block 1230) provides for calculating, for
each diagonal item Sj,j (=1, 2, . . ., K) of the matrix S, a
corresponding allocation value Pj equal to the target memory
occupation value THM/N (rounded to integer) multiplied by
a ratio between the energy Ej of such item (i.e., the square
thereof) and the total energy ES. The ratio Ej/ES is propor-
tional to the information content corresponding to the j-th
column CUS;j of US. Since Sj.j decreases as j increases, also
Ej/ES decreases as j increases. The value Pj corresponding to
the item Sj,j provides an indication about the fraction of the
target memory occupation value THM which will be allo-
cated to represent the items Xi,j of the j-th column CXj of X.
The higher the value of j, the lower the allocation value Pj,
since the lower the information content corresponding to the
j-th column CUSj of US.
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Each allocation value Pj is then rounded to an integer value
PIj (block 1240). This rounded allocation value PJj is the
number of bits assigned to represent the generic item Xi,j
belonging to the j-th column CX'j of X.

Atblock 1250, K' (i.e., the number of columns of Vm, Vm',
US, US', and X) is set to the highest j for which PIj is higher
than a threshold, preferably equal to zero.

Then (block 1260), for j=1 to K', the number of quantiza-
tion levels Qj used for quantizing the generic item USi,j
belonging to the j-th column CUSj of US so as to generate the
corresponding item US',j of US' is set to 2"(PI}). The higher
the rounded allocation value PJj, the higher the number of
quantization levels Qj.

Therefore, according to the method described above, each
item of US is advantageously quantized using a number Qj of
quantization levels QLj(y) based on the information content
of the column CUS;j which belongs to.

Oncethe values of K' and Q1, Q2, . . ., QK' are determined
with the method described above, the memory space MS3 for
storing the quantization mapping function depends of the
type of quantization used to quantize the items US(i,j) of the
matrix US into the corresponding quantized items US'(i,j) of
the matrix US'".

In case of non-uniform quantization, MS3 is equal to the
memory occupation of a data table including for each column
of CUSj of US anumber Q] of data table rows, each one listing
a numeric index INj(y), y=1 to Qj, and the corresponding
associated quantization level QLj(y).

In case of uniform quantization, MS3 is equal to, for each
column of CUSj of US, the memory occupation of a base
value (e.g., equal to QLj(1)) and a step value (e.g., equal to
(QLj(Q)-QL(ANAQj-1)).

According to an embodiment of the present invention,
instead of factorizing the matrix C' in the form U*S*V7 by
directly applying the SVD on the matrix C' (a very heavy
computational burden in case C' is large), the SVD is advan-
tageously applied to the smaller square matrix C'7*C', sensi-
bly speeding up the SVD computation. By applying the SVD
to the square matrix C'7*C', such matrix is factorized in the
form V*S**V7, By applying the method previously described
with reference to FIG. 12 to S, easily obtainable from S* with
a simple operation, the values for K'and Q1, Q2, ..., QK'are
selected. The matrix Vm is obtained from V by eliminating
the last R=K-K' columns from V. Then, the compressed
matrix Vm' is generated from Vm as in the procedure
described with reference to FIG. 11 (see block 1150). At this
point, the matrix US is obtained by multiplying C' by Vm, the
items of US are quantized and the index matrix X is generated
as in the procedure described with reference to FIG. 11 (see
blocks 1160 and 1170).

The procedures according to the embodiments of the
invention described with reference to FIGS. 11 and 12 can be
also applied to compress the so-called tree-structured code-
books. A tree-structured codebook is a codebook arranged in
a plurality of levels, wherein each codeword of a level is
associated to a corresponding set of codewords in the subse-
quent level. When a descriptor array is quantized using a
tree-structured codebook, a first, rough quantization is carried
out using the first level of the codebook, selecting the code-
word of such first level that better approximate the descriptor
array. Then, a second quantization is carried out using the
second level of the codebook, by inspecting only the code-
words thereof corresponding to the selected codeword of the
firstlevel. The process is reiterated until reaching the last level
of the tree-structured codebook.

According to an embodiment of the present invention, a
tree-structured codebook including x levels may be com-
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pressed with the procedure previously described with the
matrix C formed in the following way:
a first group of rows of C are formed by the codewords of
the first level of the tree-structured codebook;

32

level is individually compressed by applying the compression
operations already described for the single-level codebook to
an US matrix obtained by considering only the codewords of
said level.

a second group of rows of C are formed by the codewords 5 It is underlined that although the codebook compression
of'the second level of the tree-structured codebook; procedures described in detail in the present description have

e been directed to compress portions of a descriptor array (sub-

an x-th group of rows of C are formed by the codewords of array), the concepts of the present invention can be directly
the x-th level of the tree-structured codebook. applied to a full descriptor array.

Then, the compression procedure is carried out as already 10 Codebook Compression—Exemplary Matrix Values
described for the single-level codebook, until the determining This section of the description provides a numeric example
of'the values for K' and Q1, Q2, .. ., QK'. At this point, using of some of the matrices generated during the procedure
such values K' and Q1, Q2, . . ., QK', the codebook of each described with reference to FIG. 11.

C=CBK
C=
9.2112 8.6746 10.0395 11.4650 13.5815 11.2922 8.9053 8.4101
138.6537 24.1106 1.9616 2.4629 5.3038 2.6119 2.0670 24.3525
49.8938 20.3497 8.5559 8.3388 9.8446 8.3333 7.7843 18.0909
100.6994 27.4951 9.0531 12.8342 19.8983 12.3285 8.4224 25.3448
123.5751 100.4345 18.7715 6.8645 6.0713 5.0030 5.1476 21.1944
125.2223 21.6952 5.2084 5.0772 6.1797 6.9548 17.5039 99.9505
27.8627 9.4863 5.2260 24.9820 109.1541 24.7491 5.0948 9.3586
42.2997 96.9057 32.3036 8.8458 8.3667 8.4285 6.6172 8.6094
48.2478 9.7809 6.9946 8.5767 8.6187 7.8719 22.7389 87.6189
19.0383 19.0822 64.1920 95.1155 22.5266 7.1767 7.1317 10.5471
21.8533 64.5315 105.0803 26.7304 7.9565 6.8195 7.5896 8.3965
17.0069 9.5018 9.7584 8.5147 10.5827 33.9943 91.4393 37.0260
19.8879 10.2558 6.6847 7.1057 24.8338 103.1141 60.0129 18.4336
20.9942 11.1982 17.5985 100.9568 95.0604 13.9414 6.0197 9.7194
20.9369 9.7350 6.0820 14.0420 97.7723 100.6393 17.6851 11.4594
34.0949 7.6463 5.3601 5.6678 6.3209 16.2194 95.6535 112.4096
C'=C-m
m=
51.2174 28.1802 19.5544 21.7238 28.2545 23.0924 23.1133 31.9326
o
-42.0062 -19.5056 -9.5149 -10.2587 -14.6730 ~11.8002 ~14.2080 -23.5225
87.4363 -4.0696 -17.5928 -19.2609 -22.9507 ~20.4804 -21.0463 ~7.5801
-1.3236 -7.8305 -10.9985 ~13.3849 ~18.4098 ~14.7590 -15.3290 -13.8417
49.4820 -0.6851 -10.5013 -8.8896 -8.3562 -10.7639 ~14.6910 -6.5878
72.3577 72.2543 -0.7828 ~14.8592 -22.1832 ~18.0894 ~17.9658 -10.7382
74.0049 ~6.4850 ~14.3460 -16.6465 -22.0748 -16.1376 -5.6094 68.0179
-23.3547 ~18.6940 -14.3284 3.2583 80.8996 1.6568 -18.0185 -22.5740
-8.9177 68.7255 12.7492 -12.8779 -19.8878 ~14.6638 -16.4961 -23.3232
-2.9696 -18.3993 -12.5598 -13.1470 -19.6358 -15.2205 -0.3745 55.6863
-32.1791 -9.0980 44.6376 73.3917 -5.7279 -15.9157 -15.9816 -21.3855
-29.3641 36.3513 85.5259 5.0066 ~20.2980 -16.2729 -15.5238 -23.5361
-34.2105 -18.6784 -9.7960 -13.2091 -17.6718 10.9019 68.3260 5.0934
-31.3295 -17.9244 ~12.8696 ~14.6180 -3.4207 80.0218 36.8996 -13.4991
-30.2231 -16.9820 -1.9559 79.2330 66.8059 -9.1510 -17.0936 -22.2132
-30.2804 -18.4452 -13.4724 ~7.6818 69.5178 77.5469 -5.4282 -20.4732
-17.1225 -20.5339 -14.1943 -16.0559 -21.9336 -6.8729 72.5401 80.4770
C =U*s*vT
U=
-0.1135 0.0112 0.1155 -0.0358 0.6114 0.1768 0.0503 0.1696 -0.2587
-0.2639 -0.1185 -0.2691 0.1372 0.1292 0.5083 -0.1382
0.3642 0.0999 -0.3055 0.0111 0.2483 -0.3015 -0.0449 -0.2929 0.3966
-0.1923 0.2125 -0.1373 0.1174 -0.1832 0.2573 0.3896
0.0527 0.0393 0.0056 -0.0298 0.4249 0.0680 0.0145 0.0822 -0.2189
04816 0.6622 0.1940 -0.0372 0.1044 -0.1453 0.1152
0.1917 0.0771 -0.1979 0.0065 0.1207 -0.1556 -0.0328 -0.1502 0.0674
0.3904 -0.4106 -0.1262 -0.0995 0.7095 -0.0259 0.0158
03771 0.2863 -0.0984 -0.2477 -0.3180 0.0572 -0.3231 0.1115 -0.0632
0.0455 0.2870 -0.2567 -0.1495 0.0181 0.2665 -0.4853
0.4082 -0.1639 -0.1745 0.2566 -0.2196 -0.0720 0.3141 0.1016 -0.3215
0.0764 -0.0392 0.3110 0.5246 0.0196 0.2357 -0.0956
-0.2926 0.0660 -0.3541 0.0978 0.0060 04584 0.0185 -0.3930 0.1374
0.3168 -0.0050 -0.2501 0.3797 -0.1884 -0.0300 -0.2184
0.0917 0.2709 0.2068 -0.3153 -0.1076 0.3806 -0.2015 0.3408 0.2296
0.1774 -0.1783 0.1479 0.3386 0.0166 0.1189 0.4425
0.1318 -0.2210 0.0782 0.2340 0.0744 0.2220 0.3229 0.3368 0.6840
0.0039 0.1388 0.0198 -0.1111 0.1389 0.0327 -0.2831
-0.2108 0.2749 0.2867 0.3499 -0.0189 -0.4533 0.0039 0.1672 0.0907
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0.4768 -0.1040 -0.1417 0.0048 -0.3008 0.2858 -0.0529
-0.0494 0.3448 0.4904 -0.1310 -0.1867 -0.0049 0.4666 -0.4457 0.0408
-0.1179 0.2279 -0.0252 0.1270 0.2811 0.0799 -0.0118
-0.0862 -0.3408 0.2467 -0.1174 0.0872 -0.0768 -0.4392 -0.3648 0.1908
0.0839 -0.0084 0.4988 0.0804 0.0488 0.3106 -0.2540
-0.2194 -0.3003 -0.0173 -0.4494 -0.0393 -0.4360 0.0163 0.2278 0.1183
0.0201 0.1520 -0.2942 0.4761 0.1269 -0.1899 -0.1132
-0.3705 0.2086 -0.1731 0.4626 -0.1838 -0.0400 -0.3409 0.1468 0.0418
-0.2902 0.2890 0.0864 0.1766 0.4257 0.0584 0.0966
-0.3795 -0.1151 -0.3861 -0.3041 -0.2366 -0.0051 0.3151 0.0696 -0.0012
0.1278 0.0780 0.1518 -0.3204 0.0498 0.5052 0.1873
0.1044 -0.5379 0.2769 0.2118 -0.2624 0.1822 -0.1398 -0.1072 -0.1202
0.1413 0.1525 -0.4701 -0.0648 0.0889 0.1779 0.3502
S =
220.4621 0 0 0 0 0 0 0
0 184.9380 0 0 0 0 0 0
0 0 145.8051 0 0 0 0 0
0 0 0 124.4790 0 0 0 0
0 0 0 0 78.3028 0 0 0
0 0 0 0 0 71.4800 0 0
0 0 0 0 0 0 62.0052 0
0 0 0 0 0 0 0 43.7004
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
V=
0.6718 0.1395 -0.5113 0.0483 -0.2001 -0.3954 -0.0574 -0.2565
0.2311 0.3981 0.1907 -0.4079 -0.5292 0.3593 -0.3020 0.2916
-0.0725 0.3355 0.4785 0.0008 -0.3194 -0.2202 0.5149 -0.4874
-0.2904 0.2795 0.0768 0.5619 -0.2610 -0.4683 -0.3318 0.3441
-0.4702 0.0753 -0.5609 0.1572 -0.3948 0.3968 0.0018 -0.3472
-0.3053 -0.2785 -0.2385 -0.5449 -0.3045 -0.4620 0.2691 0.3113
-0.0404 -0.5401 0.2912 -0.0969 -0.2620 -0.1434 -0.5699 -0.4456
0.2995 -0.5064 0.1056 0.4296 -0.4388 0.2351 0.3648 0.2779
Vm = SC*V, considering only the first K' columns
K'=6
SC =4.8772e+004
Vm = 1.0e+004 *
-3.2767 0.6805 24936 -0.2356 0.9759 -1.9284 0.2798 1.2509
-1.1272 1.9417 -0.9299 1.9896 2.5810 1.7523 1.4729 -1.4221
0.3534 1.6365 -2.3336 -0.0038 1.5577 -1.0740 -2.5115 2.3773
1.4162 1.3634 -0.3747 -2.7405 1.2731 -2.2843 1.6180 -1.6780
2.2933 0.3675 2.7355 -0.7667 1.9258 1.9355 -0.0087 1.6934
1.4890 -1.3582 1.1633 2.6574 1.4852 -2.2533 -1.3126 -1.5181
0.1972 —-2.6340 -1.4204 0.4724 1.2778 -0.6993 2.7794 2.1733
-1.4609 -2.4698 -0.5150 -2.0954 2.1399 1.1465 -1.7794 -1.3555
US =C'*Vm
US = 1.0e+006 *
1.2208 0.1014 -0.8213 0.2171 -2.3349 0.6163
-3.9161 0.9009 2.1728 -0.0673 -0.9483 -1.0510
-0.5668 0.3549 -0.0396 0.1811 -1.6226 0.2369
-2.0613 0.6955 1.4074 -0.0395 -0.4610 -0.5424
-4.0552 2.5826 0.6996 1.5039 1.2144 0.1994
-4.3895 -1.4781 1.2406 -1.5580 0.8385 -0.2510
3.1457 0.5950 2.5181 -0.5940 -0.0229 1.5979
-0.9860 2.4434 -1.4709 1.9144 0.4108 1.3269
-1.4171 -1.9932 -0.5563 -1.4208 -0.2842 0.7740
2.2667 2.4797 -2.0392 -2.1246 0.0723 -1.5804
0.5310 3.1105 -3.4877 0.7950 0.7130 -0.0171
0.9272 -3.0744 -1.7546 0.7126 -0.3331 -0.2677
2.3592 -2.7091 0.1233 2.7282 0.1503 -1.5199
3.9835 1.8815 1.2312 -2.8086 0.7019 -0.1396
4.0810 -1.0386 2.7459 1.8465 0.9038 -0.0177

-1.1230 -4.8520 -1.9694 -1.2858 1.0020 0.6353
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Vm'
Vm'=
-32767 6805 24936 -2356 9759 -19284 2798 12509
-11272 19417 -9299 19896 25810 17523 14729
-14221
3534 16365 -23336 -38 15577 -10740 -25115
23773
14162 13634 -3747 -27405 12731 -22843 16180
-16780
22933 3675 27355 -7667 19258 19355 -87
16934
14890 -13582 11633 26574 14852 -22533 -13126
-15181
1972 -26340 -14204 4724 12778 -6993 27794
21733
-14609 -24698 -5150 -20954 21399 11465 -17794
-13555
Uniform quantization levels QLj (y)
bitsPerComponent' = 6 3 2 1 1
Levels; = 1.0e+006 *
Columns 1 through 11
-4.3895 -4.2551 -4.1206 -3.9862  -3.8517 -3.7173 -3.5828 -3.4484 -3.3139
-3.1795 -3.0450
Columns 12 through 22
-2.9105 -2.7761 -2.6416 -2.5072  -2.3727 -2.2383 -2.1038 -1.9694 -1.8349
-1.7005 -1.5660
Columns 23 through 33
-1.4316 -1.2971 -1.1627 -1.0282  -0.8937 -0.7593 -0.6248 -0.4904 -0.3559
-0.2215 -0.0870
Columns 34 through 44
0.0474 0.1819 0.3163 0.4508 0.5852 0.7197 0.8541 0.9886 1.1231
1.2575 1.3920
Columns 45 through 55
1.5264 1.6609 1.7953 1.9298 2.0642 2.1987 2.3331 2.4676 2.6020
2.7365 2.8709
Columns 56 through 64
3.0054 3.1399 3.2743 3.4088 3.5432 3.6777 3.8121 3.9466 4.0810
Levels, = 1.0e+006 *
Columns 1 through 11
-4.8520 -4.5952 -4.3383 -4.0814  -3.8246 -3.5677 -3.3109 -3.0540 -2.7972
-2.5403 -2.2835
Columns 12 through 22
-2.0266 -1.7697 -1.5129 -1.2560  -0.9992 -0.7423 -0.4855 -0.2286 0.0282
0.2851 0.5420
Columns 23 through 32
0.7988 1.0557 1.3125 1.5694 1.8262 2.0831 2.3399 2.5968 2.8537
3.1105
Levels; = 1.0e+006 *
-3.4877 -2.6134 -1.7392 -0.8650 0.0093 0.8835 1.7578 2.6320
Levels, = 1.0e+006 *
-1.8396 -0.5603 0.7190 1.9982
Levelss = 1.0e+005 *
-9.9735 5.9841
Levelsg = 1.0e+005 *
-5.9854 7.6955
us
US' = 1.0e+006 *
1.2575 0.0282 -0.8650 0.7190 -0.9974 0.7696
-3.8517 0.7988 1.7578 -0.5603 -0.9974 -0.5985
-0.6248 0.2851 0.0093 0.7190 -0.9974 0.7696
-2.1038 0.7988 1.7578 -0.5603 -0.9974 -0.5985
-4.1206 2.5968 0.8835 1.9982 0.5984 0.7696
-4.3895 -1.5129 0.8835 -1.8396 0.5984 -0.5985
3.1399 0.5420 2.6320 -0.5603 0.5984 0.7696
-1.0282 2.3399 -1.7392 1.9982 0.5984 0.7696
-1.4316 -2.0266 -0.8650 -1.8396 -0.9974 0.7696
2.3331 2.5968 -1.7392 -1.8396 0.5984 -0.5985
0.5852 3.1105 -3.4877 0.7190 0.5984 -0.5985
0.9886 -3.0540 -1.7392 0.7190 -0.9974 -0.5985
2.3331 -2.7972 0.0093 1.9982 0.5984 -0.5985
3.9466 1.8262 0.8835 -1.8396 0.5984 -0.5985
4.0810 -0.9992 2.6320 1.9982 0.5984 -0.5985
-1.1627 -4.8520 -1.7392 -1.8396 0.5984 0.7696
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X
X =
43 20 4 3 1 2
5 23 7 2 1 1
29 21 5 3 1 2
18 23 7 2 1 1
3 30 6 4 2 2
1 14 6 1 2 1
57 22 8 2 2 2
26 29 3 4 2 2
23 12 4 1 1 2
51 30 3 1 2 1
38 32 1 3 2 1
41 8 3 3 1 1
51 9 5 4 2 1
63 27 6 1 2 1
64 16 8 4 2 1
25 1 3 1 2 2
. 20 .
Codebook Compression—Exemplary Results Memory occupation MS=MS1+MS2+MS3+

This section of the description provides experimental
results obtainable by employing a codebook compressed with
the method described with reference to FIGS. 11 and 12.

1) FIRST EXAMPLE

length of the information request (“query”): 512 byte;
descriptor array DA subdivided into two sub-arrays, each
one using a codebook CBK including 2”14 codewords
CW,;
each codeword CW includes 64 unsigned char (1 byte)
elements.
1.1) Uncompressed Codebook

Memory occupation equal to 2048 KBs.
1.2) Compressed Codebook

MSR=28;

K'=15

25bits:433222111111111

MS1: 0.25 KBs

MS2: 50 KBs

MS3:0.11719 KBs

MS4: 1.875 KBs.

Memory occupation
MS4=427968 bits=52.2422 KBs
1.3) Compressed Codebook/Uncompressed Codebook Ratio

52.2422/2048=0.0255=2.5%

MS=MS1+MS2+MS3+

2) SECOND EXAMPLE

length of the information request (“query”): 2048 byte;
descriptor array DA subdivided into four sub-arrays, each
one using a codebook CBK including 2”14 codewords
CW,;
each codeword CW includes 32 unsigned char (1 byte)
elements.
2.1) Uncompressed Codebook
Memory occupation equal to 2048 KBs.
2.2) Compressed Codebook
MSR=20;
K'=11
25bits: 43322111111
MS1: 0.125 KBs
MS2: 40 KBs
MS3: 0.085938 KBs
MS4: 0.6875 KBs.
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MS4=335040 bits=40.8984 KBs
2.3) Compressed Codebook/Uncompressed Codebook Ratio
40.8984/2048=0.02=2%

3) THIRD EXAMPLE

length of the information request (“query™): 8192 byte;

descriptor array DA subdivided into eight sub-arrays;

tree-structured codebooks with two levels;

the first level includes 2”7 codewords CW;

the second level includes 2°14 codewords CW;

each one using a codebook CBK including 2”14 codewords

CW,;
each codeword CW includes 16 unsigned char (1 byte)
elements.
2.1) Uncompressed Codebook

Memory occupation equal to 2064 KBs.

2.2) Compressed Codebook

MSR=17,

K'=9;

17bits: 532211111

MS1: 0.0625 KBs

MS2: 0.26563+34 KBs

MS3: 0.0070313 KBs

MS4: 0.28125 KBs.

Memory occupation
MS4=284096 bits=346797 KBs
2.3) Compressed Codebook/Uncompressed Codebook Ratio
346797/2064=0.0168=1.6%

Uses of the Compressed Codebook

In this last section of the document, few examples are
disclosed of how a codebook compressed according to the
procedure previously described can be used for carrying out
image analysis operation according to an embodiment of the
present invention.

Firstly, the compressed codebook may be used to compress
descriptor arrays DA, o portions thereof (i.e., the sub-arrays
SDAKk, see the extraction procedure section of this docu-
ment). Making reference for example to the case of a 1xK
sub-array, the average array m (stored in the memory space
MS1) is initially subtracted from said sub-array, then the
averaged sub-array is multiplied by the compressed matrix
Vm' (stored in the memory space MS4), in such a way that all
the following operations are carried out in the reduced
K'-space instead of the K-space. At this point, the Euclidean
distances between such sub-array and all the codewords of the

MS=MS1+MS2+MS3+
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compressed codebook are calculated, and then the codeword
having the lower Euclidean distance is selected for approxi-
mating the averaged sub-array. Using a compressed code-
book according to the embodiments of the invention, the
codewords to be used for calculating the Euclidean distances,
as well as the codeword selected for approximating the sub-
array, would be the rows of the matrix US'. Expediently,
instead of having to directly store the matrix US', which
would occupy a sensible amount of memory space, according
to the embodiments of the present invention the matrix US' is
not memorized, but instead the rows thereof, i.e., the code-
words forming the compressed codebook, are indirectly
retrieved using the indexes of the corresponding rows of the
index matrix X (stored in the memory space MS2), and then
applying thereof the quantization mapping function (stored in
the memory space MS3).

The opposite operation, i.e., the retrieval of the descriptor
array (or sub-array) in the original K-space starting from the
indexes of a selected row RXi of the matrix X which identifies
a corresponding codeword in the K'-space, provides for the
following phases. Firstly, for each element Xi,j RXiof X, j=1
to K', exploiting the quantization mapping function a corre-
sponding quantization level QLj(y) is retrieved, and then a
1xK' array H is formed whose items are the retrieved quan-
tization levels QLj(y). The descriptor array in the K-space is
retrieved by multiplying each item of H by a scalar equal to
1/SC"2 (wherein SC is the coefficient used to generate the
matrix Vm', see block 1150 of FIG. 11), multiplying the
resulting scaled array H by the transpose of Vm' so as to return
to the K-space, and then summing the average array m.

In order to compare two descriptor arrays compressed in
the K'-space, it is not necessary to come back to the original
K-space. If the descriptor arrays were compressed with the
same scheme (e.g., same subdivision in sub-arrays and same
codebook compression), the comparison may be indeed car-
ried out by calculating the distances among the respective H
arrays, allowing thus to reduce the computational load, since
the descriptor array comparison procedure instead of requir-
ing the use of absolute distances, operates with distance ratios
comparisons.

Performances of Compressed Codebooks in Exemplary
Applications

FIGS. 13A-13G illustrates the performance of image com-
parison systems based on non compressed codebooks (con-
tinuous lines) and based on codebook compressed according
to the method described with reference to FIGS. 11 and 12
(dashed lines), with the x axis depicting the length informa-
tion request (“query”) in KBs, and the y axis depicting the
success percentage of a correct image matching, calculated
by fixing a maximum error on the false positives equal to 1%.

FIG. 13A refers to the MPEG CDVS image category
“graphics”;

FIG. 13B refers to the MPEG CDVS image category
“graphics” in the VGA resolution;

FIG. 13C refers to the MPEG CDVS image category
“graphics” in the VGA resolution with the images com-
pressed with a high JPEG compression;

FIG. 13D refers to the MPEG CDVS image category
“paintings”;

FIG. 13E refers to the MPEG CDVS image category
“videoframes”;

FIG. 13F refers to the MPEG CDVS image category
“buildings”;

FIG. 13G refers to the MPEG CDVS image category “com-
mon objects”.

The previous description presents and discusses in detail
several embodiments of the present invention; nevertheless,
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several changes to the described embodiments, as well as
different invention embodiments are possible, without
departing from the scope defined by the appended claims.

The invention claimed is:

1. A method for processing an image, comprising:

identifying a group of keypoints in the image;

for each keypoint of the group

a) calculating a corresponding descriptor array includ-
ing a plurality of array elements, each array element
storing values taken by a corresponding color gradi-
ent histogram of a respective sub-region of the image
in the neighborhood of the keypoint;

b) generating at least one compressed descriptor array
by compressing at least one portion of the descriptor
array by means of vector quantization using a code-
book comprising a plurality of codewords;

exploiting said at least one compressed descriptor array of

the keypoints of said group for analysing the image,
wherein the method further comprises:

compressing the codebook, said compressing the code-

book including:

generating a codebook matrix, each row of the codebook

matrix being a codeword of the codebook;

factorising the codebook matrix so as to obtain the product

of at least a first matrix and a second matrix, the energy

of the items of the second matrix generally non-increas-
ing as the column indexes of such matrix increase,

truncating the first matrix by removing therefrom a first
number of last columns;

truncating the second matrix by removing therefrom the

first number of last columns and the first number of last

rOWS;

generating a first further matrix corresponding to the prod-

uct of the truncated first matrix by the truncated second

matrix;

quantizing each item of the first further matrix, wherein

each item belonging to a column of the first further
matrix is quantized using a corresponding number of
quantization levels that is lower than or equal to the
number of quantization levels used to quantize the items
belonging to a preceding column;

generating a second further matrix wherein each item of

the second further matrix corresponds to an item of the
first further matrix, each item of said second further
matrix being an index associated to the quantization
level assumed by the corresponding quantized item of
the first further matrix;

storing the codebook by memorizing said indexes of the

second further matrix in a memory unit.

2. The method according to claim 1, wherein the first
matrix is an orthonormal matrix and the second matrix is a
diagonal matrix whose diagonal items correspond to the sin-
gular values of the codebook matrix, each diagonal item
belonging to a column of the second matrix, except a last
column, being higher than the item belonging to the following
column.

3. The method according to claim 1, wherein said product
of at least the first matrix and the second matrix further
comprise the transpose of a third matrix, the third matrix
being an orthonormal matrix

and wherein said method further comprises:

truncating said third matrix by removing therefrom the first

number of last columns;

storing the truncated third matrix in the memory unit.

4. The method according to claim 3, wherein said truncat-
ing the first, the second and the third matrices further com-
prises:
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calculating the energy of the second matrix;

setting a first target value for the memory space occupied
by all the quantized items of the second further matrix
when memorized in the memory unit;

for each diagonal item of the second matrix, calculating a
respective allocation value corresponding to the first
target value multiplied by a ratio between the energy of
such item and the energy of the second matrix;

rounding each allocation value to an integer value, and

tuncated third matrix represented with the selected data
type in the memory unit.
7. The method of claim 6, wherein said generating the first

42

storing the codebook further including memorizing the
average array in the memory unit.
10. A system for processing an image comprising a group

of keypoints, said system being configured to perform the

5 following operations:

for each keypoint of the group:

a) calculating a corresponding descriptor array includ-
ing a plurality of array elements, each array element
storing values taken by a corresponding color gradi-
ent histogram of a respective sub-region of the image

setting the first number to the number of columns of the 10 i1 the neiehborhood of the k L2
codebook matrix minus the higher column index of the in the neighborhood of the keypont; .
second matrix for which the rounded allocation value b) generating at least one COmpIeSs ed descriptor array
corresponding to the diagonal item belonging to the by compressing at least one portion Ofth? descriptor
column of the second matrix identified by such column array by means of vector quantization using a code-
index is higher than a threshold. 15 book comprising a plurality of codewords;
5. The method according to claim 4, wherein said quantiz- exploiting sa.1d atleast one compressed des.cnptor array of
ing each item of the first further matrix further comprises: the key points of said group for a.nalysmg the image,
for each column of the first further matrix, setting the Wheren.l theﬁn eth?idgunll(l er c%mpnses: e th d
corresponding number of quantization levels for quan- COI;IpI‘ES.SlIllg 5 N .CO ebook, said compressing the code-
tizing each item of said column of the first further matrix 20 00K INCIUCINE: .
to two raised to the power of the rounded allocation generating a codebook matrix, each row of the codebook
value corresponding to the diagonal item belonging to matrix being a codeword ofthe codebook.;
fhe column of the second matrix having the same column factorising the codebook matrix so as to obtain the product
index as said column of the first further matrix of at least a first matrix and a second matrix, the energy
6. The method of claim 3, further including: ’ 25 of the items of the second matrix generally non-increas-
sélecting a data type: ’ ' ing as the column indexes of such matrixes increase,
scaling each item of the truncated third matrix by a coeffi- truncating the first matrix by removing therefrom a first
cient corresponding to the ratio between the highest num‘per 0111“ last colgmns; x b ine theref: h
value that can be represented with the selected data type truncating the second matrix by removing therefrom the
and the highest absolute value among the absolute val- 30 first number of last columns and the first number of last
ues of the items of the truncated third matrix, and TOWS, first furth . di h q
representing each scaled item of the truncated third matrix generating a Lirst further matrix corresponding to the prod-
with the selected data type, said storing the codebook uct o.f the truncated first matrix by the truncated second
further including memorizing the scaled items of the matrix; . . .
35 quantizing each item of the first further matrix, wherein

each item belonging to a column of the first further
matrix is quantized using a corresponding number of
quantization levels that is lower than or equal to the

further matrix comprises multiplying the truncated first
matrix by the truncated second matrix and then multiplying
each item of the resulting matrix by the coefficient. 40
8. The method of claim 1, wherein said factorizing the
codebook matrix comprises using the Singular Value Decom-
position.
9. The method of claim 1, further including:
before factorising the codebook matrix into the product of 45
at least the first and second matrices, calculating an
average array obtained from the average of all the rows
of the codebook matrix and then subtracting such aver-
age array from each row of the codebook matrix, said L

number of quantization levels used to quantize the items
belonging to a preceding column:

generating a second further matrix wherein each item of
the second further matrix corresponds to an item of the
first further matrix, each item of said second further
matrix being an index associated to the quantization
level assumed by the corresponding quantized item of
the first further matrix;

storing the codebook by memorizing said indexes of the
second further matrix in a memory unit.



